COMPUTER SCIENCE

 SEDGEWICK/WAYNEPART I: PROGRAMMING IN JAVA

7. Performance

- The challenge
- Empirical analysis
- Mathematical models
- Doubling method
- Familiar examples

The challenge (since the earliest days of computing machines)

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise-By what course of calculation can these results be arrived at by the machine in the shortest time?"

- Charles Babbage

Difference Engine \#2 Designed by Charles Babbage, c. 1848
Built by London Science Museum, 1991

Q. How many times do you have to turn the crank?

The challenge (modern version)

Q. Will I be able to use my program to solve a large practical problem?

Q. If not, how might I understand its performance characteristics so as to improve it?

Key insight (Knuth 1970s). Use the scientific method to understand performance.

Three reasons to study program performance

1. To predict program behavior

- Will my program finish?
- When will my program finish?

2. To compare algorithms and implementations.

- Will this change make my program faster?
- How can I make my program faster?

3. To develop a basis for understanding the problem and for designing new algorithms

- Enables new technology.
- Enables new research.

```
public class Gambler
{
    public static void main(String[] args)
    {
        int stake = Integer.parseInt(args[0]);
        int goal = Integer.parseInt(args[1]);
        int trials = Integer.parseInt(args[2]);
        int wins = 0;
        for (int t = 0; t < trials; t++)
        {
            int cash = stake;
            while (cash > 0 && cash < goal)
                if (Math.random() < 0.5) cash++;
                else cash--;
            if (cash == goal) wins++;
        }
        StdOut.print(wins + " wins of " + trials);
    }
}
```

An algorithm is a method for solving a problem that is suitable for implementation as a computer proqram.

We study several algorithms later in this course.
Taking more CS courses? You'll learn dozens of algorithms. 5

An algorithm design success story

N -body simulation

- Goal: Simulate gravitational interactions among N bodies.
- Brute-force algorithm uses N^{2} steps per time unit.
- Issue (1970s): Too slow to address scientific problems of interest.
- Success story: Barnes-Hut algorithm uses NlogN steps and enables new research.

Andrew Appel PU '81
senior thesis

Another algorithm design success story

Discrete Fourier transform

- Goal: Break down waveform of N samples into periodic components.
- Applications: digital signal processing, spectroscopy, ...
- Brute-force algorithm uses N^{2} steps.
- Issue (1950s): Too slow to address commercial applications of interest.
- Success story: FFT algorithm uses NlogN steps and enables new technology.

John Tukey 1915-2000

Quick aside: binary logarithms

Def. The binary logarithm of a number $N($ written $\lg N$) is the number x satisfying $2^{x}=N$.

Q. How many recursive calls for convert (N)?

```
public static String convert(int N)
```

public static String convert(int N)
{
{
if (N == 1) return "1";
if (N == 1) return "1";
return convert(N/2) + (N % 2);
return convert(N/2) + (N % 2);
}

```
}
```


Frequently encountered values

| N | approximate value | $\lg N$ | $\log _{10} N$ |
| :---: | :---: | :---: | :---: | :---: |
| 210 | 1 thousand | 10 | 3.01 |
| 2^{20} | 1 million | 20 | 6.02 |
| 2^{30} | 1 billion | 30 | 9.03 |

A. Largest integer less than or equal to $\lg N($ written $\lfloor\lg N\rfloor) . \longleftarrow$ Prove by induction.

Details in "sorting and searching" lecture.

Fact. The number of bits in the binary representation of N is $1+\lfloor\lg N\rfloor$.

Fact. Binary logarithms arise in the study of algorithms based on recursively solving problems half the size (divide-and-conquer algorithms), like convert, FFT and Barnes-Hut.

An algorithmic challenge: 3-sum problem

Three-sum. Given N integers, enumerate the triples that sum to 0.
For simplicity, just count them.

Three-sum implementation

Image sources

http://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg
http://commons.wikimedia.org/wiki/File:Charles_Babbage_1860.jpg
http://commons.wikimedia.org/wiki/File:John_Tukey.jpg
http://commons.wikimedia.org/wiki/File:Andrew_Apple_(FloC_2006).jpg
http://commons.wikimedia.org/wiki/File:Hubble's_Wide_View_of_'Mystic_Mountain'_in_Infrared.jpg

CS.7.A.Performance.Challenge

7. Performance

- The challenge
- Empirical analysis
- Mathematical models
- Doubling method
- Familiar examples

A first step in analyzing running time

Find representative inputs

- Option 1: Collect actual input data.
- Option 2: Write a program to generate representative inputs.

Input generator for ThreeSum

```
public class Generator
    { // Generate N integers in [-M, M)
        public static void main(String[] args)
    {
        int M = Integer.parseInt(args[0]);
        int N = Integer.parseInt(args[1]);
        for (int i = 0; i < N; i++)
            StdOut.println(StdRandom.uniform(-M, M));
    }
}
```

\% java Generator 100000010
28773
-807569 \% java Generator 1010
$-425582 \quad$ -
$594752 \quad-2$
$\begin{array}{ll}600579 & -4\end{array}$
-4837841
-861312 -2
-690436 -10
-732636
360294

not much chance of a 3-sum
-4
1 -2
-4
-2
10
 of a 3-sum

Empirical analysis

Run experiments

- Start with a moderate input size N.
- Measure and record running time.
- Double input size N.
- Repeat.
- Tabulate and plot results.

Run experiments
\% java Generator 10000001000 | java ThreeSum 59 (0 seconds)
\% java Generator 10000002000 | java ThreeSum 522 (4 seconds)
\% java Generator 10000004000 | java ThreeSum 3992 (31 seconds)
\% java Generator 10000008000 | java ThreeSum 31903 (248 seconds)

Replace println() in ThreeSum

Measure running time

with this code.

```
doub1e start = System.currentTimeMi11is() / 1000.0;
int cnt = count(a);
double now = System.currentTimeMi11is() / 1000.0;
StdOut.printf("%d (%.Of seconds)\n", cnt, now - start);
```

Tabulate and plot results

Aside: experimentation in CS

is virtually free, particularly by comparison with other sciences.

Chemistry

Biology

Bottom line. No excuse for not running experiments to understand costs.

Data analysis

Curve fitting

- Plot on log-log scale.
- If points are on a straight line (often the case), a power law holds-a curve of the form $a N^{b}$ fits.
- The exponent b is the slope of the line.
- Solve for a with the data.

N	T_{N}	$\lg N$	$\lg T_{N}$	$4.84 \times 10^{-10} \times N^{3}$
1000	0.5	10	-1	0.5
2000	4	11	2	4
4000	31	12	5	31
8000	248	13	8	248

Prediction and verification

Hypothesis. Running time of ThreeSum is $4.84 \times 10^{-10} \times N^{3}$.

Prediction. Running time for $N=16,000$ will be 1982 seconds.

Q. How much time will this program take for $N=1$ million?
A. 484 million seconds (more than 15 years).

Another hypothesis

Hypothesis. Running times on different computers differ by only a constant factor.

Image sources
http://commons.wikimedia.org/wiki/Fi1e:FEMA_-_2720_-_Photograph_by_FEMA_News_Photo.jpg http://pixabay.com/en/lab-research-chemistry-test-217041/
http://upload.wikimedia.org/wikipedia/commons/2/28/Cut_rat_2.jpg
http://pixabay.com/en/view-glass-future-crysta1-ba11-32381/

CS.7.B.Performance.Empirical

7. Performance

- The challenge
- Empirical analysis
- Mathematical models
- Doubling method
- Familiar examples

Mathematical models for running time

Q. Can we write down an accurate formula for the running time of a computer proqram?
A. (Prevailing wisdom, 1960s) No, too complicated.
A. (D. E. Knuth, 1968-present) Yes!

- Determine the set of operations.
- Find the cost of each operation (depends on computer and system software).
- Find the frequency of execution of each operation (depends on algorithm and inputs).
- Total running time: sum of cost \times frequency for all operations.

Warmup: 1-sum

```
public static int count(int[] a)
{
    int N = a.length;
    int cnt = 0;
    for (int i = 0; i < N; i++)
        if (a[i] == 0)
            cnt++;
    return cnt;
}
```

operation	cost	frequency
function call/return	20 ns	1
variable declaration	2 ns	2
assignment	1 ns	2
less than compare	$1 / 2 \mathrm{~ns}$	$\mathrm{~N}+1$
equal to compare	$1 / 2 \mathrm{~ns}$	N
array access	$1 / 2 \mathrm{~ns}$	N
increment	$1 / 2 \mathrm{~ns}$	between N and 2 N
	\uparrowb	
representative estimates (with some poetic license); knowing exact values may require study and experimentation.		

Q. Formula for total running time?
A. $c N+26.5$ nanoseconds, where c is between 2 and 2.5 , depending on input.

Warmup: 2-sum

```
public static int count(int[] a)
{
    int N = a.length;
    int cnt = 0;
    for (int i = 0; i < N; i++)
        for (int j = i+1; j < N; j++)
                if (a[i] + a[j] == 0)
                cnt++;
    return cnt;
}
```


Q. Formula for total running time ?
A. $c_{1} N^{2}+c_{2} N+c_{3}$ nanoseconds, where... [complicated definitions].

Simplifying the calculations

Tilde notation

- Use only the fastest-growing term.
- Ignore the slower-growing terms.

Rationale

- When N is large, ignored terms are negligible.
- When N is small, everything is negligible.

Q. Formula for 2-sum running time when count is not large (typical case)?
A. $\sim 5 / 4 N^{2}$ nanoseconds.

Mathematical model for 3-sum

```
public static int count(int[] a)
{
    int N = a.length;
    int cnt = 0;
    for (int i = 0; i < N; i++)
        for (int j = i+1; j < N; j++)
                for (int k = j+1; k < N; k++)
                    if (a[i] + a[j] + a[k] == 0)
                cnt++;
    return cnt;
}
```

operation	cost	frequency
function call/return	20 ns	1
variable declaration	2 ns	$\sim N$
assignment	1 ns	$\sim N$
less than compare	1/2 ns	$\sim N^{3} / 6$
equal to compare	1/2 ns	$\sim N^{3} / 6$
array access	1/2 ns	$\sim N^{3} / 2$
increment	1/2 ns	$\sim N^{3} / 6$
$\binom{N}{3}=\frac{N(N-1)(N-2)}{6} \sim \frac{N^{3}}{6}$		

assumes count is not large
Q. Formula for total running time when return value is not large (typical case)?
A. $\sim N^{3} / 2$ nanoseconds. $\quad \checkmark \longleftarrow$ matches $4.84 \times 10^{-10} \times N^{3}$ empirical hypothesis

Context

Scientific method

- Observe some feature of the natural world.
- Hypothesize a model consistent with observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by refining until hypothesis and observations agree.

Empirical analysis of programs

- "Feature of natural world" is time taken by a program on a computer.
- Fit a curve to experimental data to get a formula for running time as a function of N.
- Useful for predicting, but not explaining.

Mathematical analysis of algorithms

- Analyze algorithm to develop a formula for running time as a function of N.
- Useful for predicting and explaining.
- Might involve advanced mathematics.
- Applies to any computer.

Good news. Mathematical models are easier to formulate in CS than in other sciences.

Image sources

http://commons.wikimedia.org/wiki/File:KnuthAtOpenContentA11iance.jpg
http://commons.wikimedia.org/wiki/File:Pourbus_Francis_Bacon.jpg
http://commons.wikimedia.org/wiki/File:Frans_Hals_-_Portret_van_René_Descartes.jpg
http://commons.wikimedia.org/wiki/File:John_Stuart_Mi11_by_London_Stereoscopic_Company,_c1870.jpg

CS.7.C.Performance.Math

Key questions and answers

Q. Is the running time of my program $\sim a N^{b}$ seconds?
A. Yes, there's good chance of that. Might also have a $(\lg N)^{c}$ factor.
Q. How do you know?
A. Computer scientists have applied such models for decades to many, many specific algorithms and applications.
A. Programs are built from simple constructs (examples to follow).
A. Real-world data is also often simply structured.
A. Deep connections exist between such models and a wide variety of discrete structures (including some programs).

Doubling method

Hypothesis. The running time of my program is $T_{N} \sim a N^{b}$.
Consequence. As N increases, $T_{2 N} / T_{N}$ approaches 2^{b}.

Doubling method

- Start with a moderate size.
- Measure and record running time.
- Double size.
- Repeat while you can afford it.
- Verify that ratios of running times approach 2^{b}.
- Predict by extrapolation:
multiply by 2^{b} to estimate $T_{2 N}$ and repeat.

Bottom line. It is often easy to meet the challenge of predicting performance.

Order of growth

Def. If a function $f(N) \sim \operatorname{ag}(N)$ we say that $g(N)$ is the order of growth of the function.

Hypothesis. Order of growth is a property of the algorithm, not the computer or the system.

Experimental validation

When we execute a program on a computer that is X times faster, we expect the program to be X times faster.

Explanation with mathematical model

Machine- and system-dependent features of the model are all constants.

Order of growth

Hypothesis. The order of growth of the running time of my program is $N^{b}(\log N) c$. since constant base not relevant

Evidence. Known to be true for many, many programs with simple and similar structure.

Logarithmic ($\log \mathbf{N}$)

```
    public static void f(int N)
    {
        if (N == 0) return;
        ... f(N/2)...
    }
```

```
Quadratic (N}\mp@subsup{N}{}{2
        ...
        public static void f(int N)
    {
        if (N == 0) return;
        ... f(N/2)...
        ... f(N/2)...
        for (int i = 0; i < N; i++)
    }
```


Linearithmic ($\mathrm{N} \log \mathrm{N}$)

Quadratic (\mathbf{N}^{2})

```
    for (int i = 0; i < N; i++)
```

 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
    ```
    for (int j = i+1; j < N; j++)
```

Stay tuned for examples.

Cubic (\mathbf{N}^{3})

```
    for (int i = 0; i < N; i++)
```

 for (int \(j=i+1 ; j<N ; j++\))
 for (int \(k=j+1 ; k<N ; k++\))

Exponential ($\mathbf{2}^{\mathrm{N}}$)

```
    public static void f(int N)
```

 \{
 if (\(N==0\)) return;
 ... \(f(N-1) .\).
 \(\ldots f(N-1) \ldots\)
 \}
 s
ignore for practical purposes (infeasible for large N)

Order of growth classifications

An important implication

Moore's Law. Computer power increases by a roughly a factor of 2 every 2 years.
Q. My problem size also doubles every 2 years. How much do I need to spend to get my job done?
a very common situation: weather prediction, transaction processing, cryptography...

| Do the math | | | now | 2 years from now | 4 years from now | | $2 M$ years from now |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T_{N}=a N^{3}$ | running time today | N | \$X | \$X | \$ X | ... | \$ X |
| $T_{2 N}=(a / 2)(2 N)^{3}$ | running time in 2 years | $N \log N$ | \$X | \$X | \$X | ... | \$X |
| $=4 a N^{3}$ | | N^{2} | \$X | \$2X | \$4X | ... | \$2 ${ }^{M} \mathrm{X}$ |
| $=4 T_{N}$ | | N^{3} | \$X | \$4x | \$16X | ... | \$4M X |

A. You can't afford to use a quadratic algorithm (or worse) to address increasing problem sizes.

Meeting the challenge

The experiment showed my program to have a higher order of growth than I expected. I found and fixed the bug.

Time for some pizza!

Doubling experiments provide good insight on program performance

- Best practice to plan realistic experiments for debugging, anyway.
- Having some idea about performance is better than having no idea.
- Performance matters in many, many situations.

Caveats

It is sometimes not so easy to meet the challenge of predicting performance.

Good news. Doubling method is robust in the face of many of these challenges.

https://openclipart.org/detai1/25617/astrid-graeber-adult-by-anonymous-25617
https://openc1ipart.org/detai1/169320/gir1-head-by-jza
https://openclipart.org/detai1/191873/manga-girl---true-svg--by-j4p4n-191873

CS.7.D.Performance. Doubling
wor fry

Example: Gambler's ruin simulation

| N | T_{N} | $T_{N} / T_{N / 2}$ |
| :---: | :---: | :---: |
| 1000 | 4 | |
| 2000 | 17 | 4.25 |
| 4000 | 56 | 3.29 |
| 8000 | 286 | 5.10 |
| 16000 | 1172 | 4.09 |
| 32000 | $1172 \times 4=4688$ | 4 |
| \ldots | | |
| 1024000 | $1172 \times 46=4800512$ | 4 |

math model says order of growth should be N^{2}
A. 4.8 million seconds (about 2 months).

```
% java Gambler 16000 32000 100
48 wins of 100 (1172 seconds)
```


Pop quiz on performance

Q. Let T_{N} be the running time of program Mystery and consider these experiments:

```
public class Mystery
{
    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
    }
}
```

Q. Predict the running time for $N=64,000$.
Q. Estimate the order of growth.

| N | T_{N} (in seconds) | $T_{N} / T_{N / 2}$ |
| :---: | :---: | :---: |
| 1000 | 5 | |
| 2000 | 20 | 4 |
| 4000 | 80 | 4 |
| 8000 | 320 | 4 |

Pop quiz on performance

Q. Let T_{N} be the running time of program Mystery and consider these experiments.

Q. Predict the running time for $N=64,000$.
A. 20480 seconds.
Q. Estimate the order of growth.
A. N^{2}, since $\lg 4=2$.

| N | T_{N} (in seconds) | $T_{N} / T_{N / 2}$ |
| :---: | :---: | :---: |
| 1000 | 5 | |
| 2000 | 20 | 4 |
| 4000 | 80 | 4 |
| 8000 | 320 | 4 |
| 16000 | $320 \times 4=1280$ | 4 |
| 32000 | $1280 \times 4=5120$ | 4 |
| 64000 | $5120 \times 4=20480$ | 4 |

Another example: Coupon collector

Q. How lonq to simulate collecting 1 million coupons?

```
public class Collector
pub
    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        int trials = Integer.parseInt(args[1]);
        int cardent = 0;
        double start = System.currentTimeMil1is()/1000.0;
        for (int i = 0; i < trials; i++)
    {
        int valcnt = 0;
        boolean[] found = new boolean[N];
        while (valcnt < N)
        {\mp@code{w}
            int val = (int) (StdRandom() * N);
            cardcnt++;
            if (!found[val])
                { valcnt++; found[val] = true; }
        }
    }
    doub7e now = System.currentTimeMil1is()/1000.0;
        StdOut.printf("%d %.Of ", N, N*Math.log(N) + .57721*N);
        StdOut.print(cardent/trials);
        StdOut.printf(" (%.Of seconds)\n", now - start);
    }
}
```

A. About 1 minute. \qquad might run out of memory trying for 1 billion

| N | T_{N} | $T_{N} / T_{N / 2}$ |
| :---: | :---: | :---: |
| 125000 | 7 | |
| 250000 | 14 | 2 |
| 500000 | 31 | 2.21 |
| 1000000 | $31 \times 2=63$ | 2 |

\% java Collector 125000100
12500015391601518646 (7 seconds)
\% java Collector 250000100
25000032516073173727 (14 seconds)
\% java Collector 500000100 50000068497876772679 (31 seconds)

[^0]
Analyzing typical memory requirements

A bit is 0 or 1 and the basic unit of memory.

A byte is eight bits - the smallest addressable unit.

1 megabyte (MB) is about 1 million bytes.
1 gigabyte (GB) is about 1 billion bytes.

| Primitive-type values | | | System-supported data structures (typical) | |
| :---: | :---: | :---: | :---: | :---: |
| type | bytes | | type | bytes |
| boolean | 1 | $\square \longleftarrow$ Note: not 1 bit | int[N] | $4 \mathrm{~N}+16$ |
| char | 2 | \square | double[N] | $8 N+16$ |
| int | 4 | $\square \square$ | int[N][N] | $4 N^{2}+20 N+16 \sim 4 N^{2}$ |
| float | 4 | $\square \square$ | | |
| 1ong | 8 | 『1111\| | double[N][N] | $8 N^{2}+20 N+16 \sim 8 N^{2}$ |
| double | 8 | $\square 111$ | String | $2 N+40$ |

Example. 2000-by-2000 double array uses $\sim 32 \mathrm{MB}$.

Summary

Use computational experiments, mathematical analysis, and the scientific method to learn whether your program might be useful to solve a large problem.
Q. What if it's not fast enough?
A.

Case in point

Not so long ago, 2 CS grad students had a program to index and rank the web (to enable search).

Lesson. Performance matters!

COMPUTER SCIENCE
 S E D G E W I C K / W A Y N E PART I: PROGRAMMING IN JAVA

Image source
http://en.wikipedia.org/wiki/File:Google_page_brin.jpg

COMPUTER SCIENCE

 SEDGEWICK/WAYNEPART I: PROGRAMMING IN JAVA

7. Performance

[^0]: \% java Collector 1000000100
 10000001439272114368813 (66 seconds)

