

3

sequential circuit: loops allowed (stay tuned)

Context

- Q. What is a combinational circuit?
- A. A digital circuit (all signals are 0 or 1) with no feedback (no loops).

analog circuit: signals vary continuously

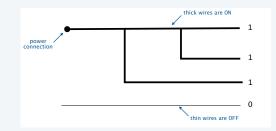
- Q. Why combinational circuits?
- A. Accurate, reliable, general purpose, fast, cheap.
- **Basic abstractions**
- On and off.
- Wire: propagates on/off value.
- Switch: controls propagation of on/off values through wires.

Applications. Smartphone, tablet, game controller, antilock brakes, microprocessor, ...

Wires

Wires propagate on/off values

- ON (1): connected to power.
- OFF (0): not connected to power.
- Any wire connected to a wire that is ON is also ON.
- Drawing convention: "flow" from top, left to bottom, right.



Controlled Switch

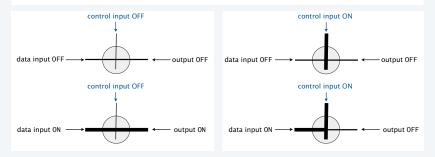
Switches control propagation of on/off values through wires.

- Simplest case involves two connections: control (input) and output.
- control OFF: output ON
- control ON: output OFF

Controlled Switch

Switches control propagation of on/off values through wires.

- General case involves *three* connections: control input, *data input* and output.
- control OFF: output is connected to input
- control ON: output is disconnected from input

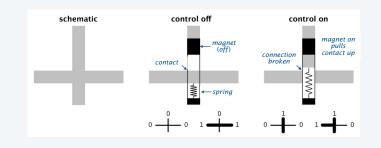


Idealized model of pass transistors found in real integrated circuits.

Controlled switch: example implementation

A relay is a physical device that controls a switch with a magnet

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.



First level of abstraction

Switches and wires model provides separation between physical world and logical world.

- We assume that switches operate as specified.
- That is the only assumption.
- Physical realization of switch is irrelevant to design.

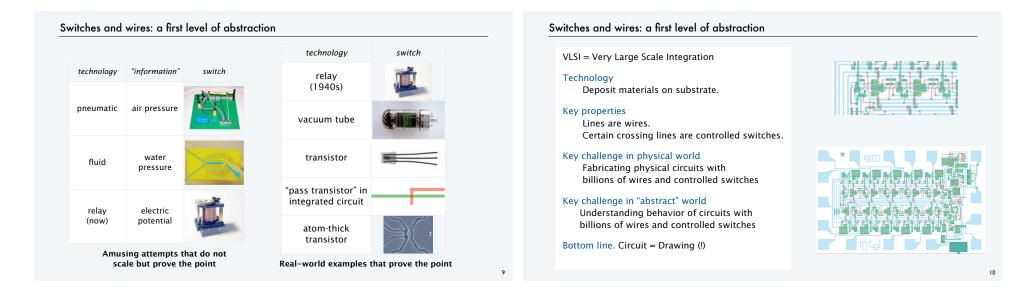
Physical realization dictates performance

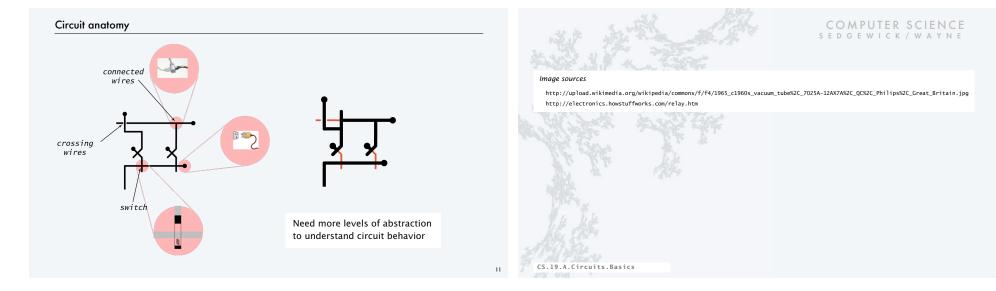
- Size.
- Speed.
- Power.

New technology immediately gives new computer.

Better switch? Better computer.

Basis of Moore's law.





Boolean algebra

Developed by George Boole in 1840s to study logic problems

• Variables represent *true* or *false* (1 or 0 for short).

• Basic operations are AND, OR, and NOT (see table below). Widely used in mathematics, logic and computer science.

operation	Java notation	logic notation	circuit design (this lecture)	
AND	х && у	$x \wedge y$	xy	
OR	х у	$x \lor y$	x + y	various notation in common use
NOT	! x	¬ <i>x</i>	<i>x</i> '	

DeMorgan's Laws

(xy)' = (x' + y')

(x + y)' = x'y'

Example: (stay tuned for proof)

Relevance to circuits. Basis for next level of abstraction.

Truth tables

A truth table is a systematic way to define a Boolean function

- One row for each possible set of arguments.
- Each row gives the function value for the specified arguments.
- *N* inputs: 2^{*N*} rows needed.

x	<i>x</i> '	x	y	xy	x	y	x + y		x	y	NOR	x	y	XOR
0	1	0	0	0	0	0	0		0	0	1	0	0	0
1	0	0	1	0	0	1	1		0	1	0	0	1	1
N	от	1	0	0	1	0	1		1	0	0	1	0	1
		1	1	1	1	1	1		1	1	0	1	1	0
		AND			OR					NOR			XOR	

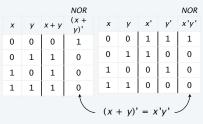
Truth table proofs

Truth tables are convenient for establishing identities in Boolean logic

- One row for each possibility.
- Identity established if columns match.

Proofs of DeMorgan's laws

x	y	xy						x' + y'				
0	0	0	1	0	0	1	1	1 1 1 0				
0	0 1	0	1	0	1	1	0	1				
1		0	1	1	0	0	1	1				
1	1		0	1	1	0	0	0				
(xy)' = (x' + y')												



All Boolean functions of two variables

- Q. How many Boolean functions of two variables?
- A. 16 (all possibilities for the 4 bits in the truth table column).

Truth tables for all Boolean functions of 2 variables

x	y	ZERO	AND		x		y	XOR	OR	NOR	EQ	$\neg y$		¬ <i>x</i>		NAND	ONE
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Functions of three and more variables

Q. How many Boolean functions of three variables?

A. 256 (all possibilities for the 8 bits in the truth table column).

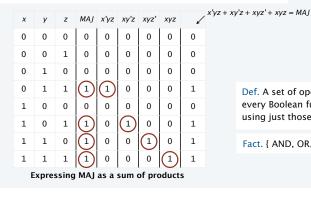
										all extend to N variables
x	У	z	AND	OR	NOR	MAJ	ODD	Examples		↓
0	0	0	0	0	1	0	0	AND logica	al AND	0 iff any inputs is 0 (1 iff all inputs 1)
v	Ŭ	•	Ŭ	v	-	Ŭ	Ŭ	OR logic	al OR	1 iff any input is 1 (0 iff all inputs 0)
0	0	1	0	1	0	0	1	NOR logic	al NOR	0 iff any input is 1 (1 iff all inputs 0)
0	1	0	0	1	0	0	1	MAJ maj	jority	1 iff more inputs are 1 than 0
-	_	-	-		-	-	-	ODD odd	parity	1 iff an odd number of inputs are 1
0	1	1	0	1	0	1	0			
1	0	0	0	1	0	0	1	Q. How ma	ny Boo	blean functions of N variables?
1	0	1	0	1	0	1	0		Ν	number of Boolean functions with N variables
1	1	0	0	1	0	1	0		2	24 = 16
-	-	Ŭ	Ŭ	-	Ŭ	-	Ŭ	a = a(2N)	3	2 ⁸ = 256
1	1	1	1	1	0	1	1	A. 2 ^(2^N)	4	216 = 65,536
	. Dee	leen					ahlaa		5	2 ³² = 4,294,967,296
Some Boolean functions of 3 variables										264 = 18,446,744,073,709,551,616

Universality of AND, OR and NOT

Every Boolean function can be represented as a sum of products

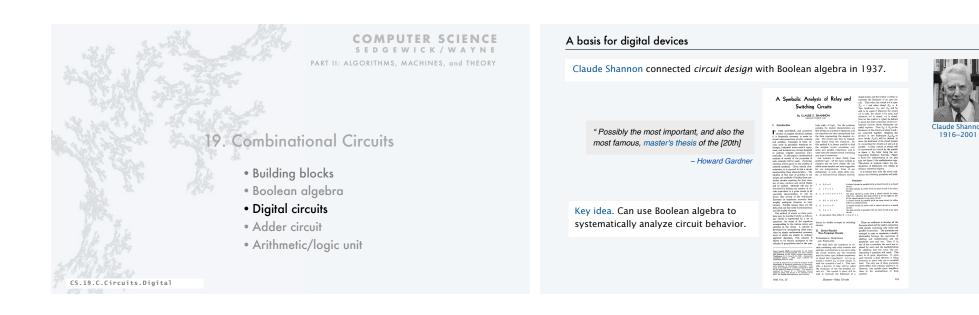
• Form an AND term for each 1 in Boolean function.

• OR all the terms together.



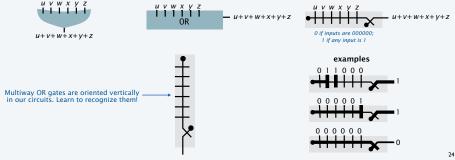
Def. A set of operations is *universal* if every Boolean function can be expressed using just those operations. 17

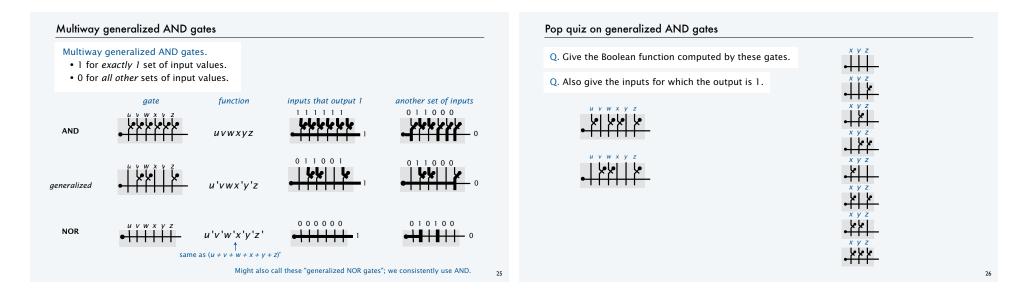
Fact. { AND, OR, NOT } is universal.

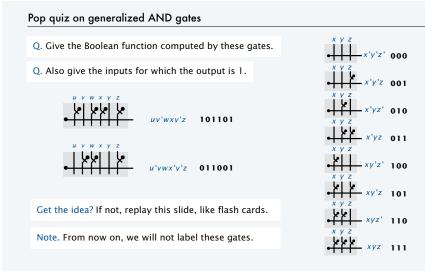


boolean function	notation	truth table	classic symbol	our symbol	under the cover circuit (gate)	proof
NOT	<i>x</i> '	x x' 0 1 1 0	x — • • - x'	x – – – x'	x 💉 x'	1 iff x is 0
NOR	(x + y)'	x y NOR 0 0 1 0 1 0 1 0 0 1 1 0	x - y - y - (x+y)'	$\frac{x \ y}{NOR} - (x+y)$	(x+y)	y 1 iff x and y are both 0
OR	<i>x</i> + <i>y</i>	x y OR 0 0 0 0 1 1 1 0 1 1 1 1	x - y x+y	$\begin{array}{c} x y \\ \mathbf{I} \mathbf{I} \\ \mathbf{OR} \end{array} - x + y$		x + y = ((x + y))
AND	xy	x y AND 0 0 0 0 1 0 1 0 0 1 1 1	x = -xy	x y I I ANDxy	x y x y x y xy	xy = (x' + y)

Multiway OR gates OR gates with multiple inputs. • 1 if any input is 1. • 0 if *all* inputs are 0. classic symbol our symbol under the cover u v w x y z

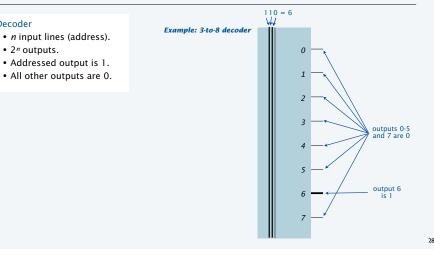






A useful combinational circuit: decoder

Decoder



A useful combinational circuit: decoder

Decoder

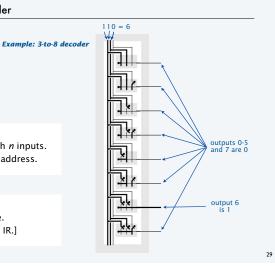
- *n* input lines (address).
- 2ⁿ outputs.
- Addressed output is 1.
- All other outputs are 0.

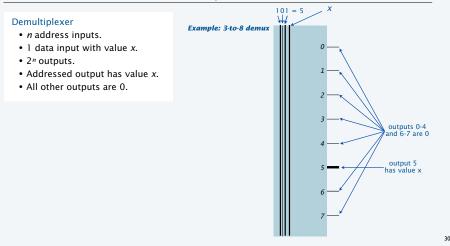
Implementation

- Use all 2ⁿ generalized AND gates with *n* inputs.
- Only one of them matches the input address.

Application (next lecture)

- Select a memory word for read/write.
- [Use address bits of instruction from IR.]





Another useful combinational circuit: demultiplexer (demux)

Demultiplexer

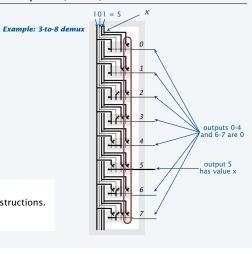
- n address inputs.
- 1 data input with value x.
- 2ⁿ outputs.
- Addressed output has value x.
- All other outputs are 0.

Implementation

- Start with decoder.
- Add AND x to each gate.

Application (next lecture)

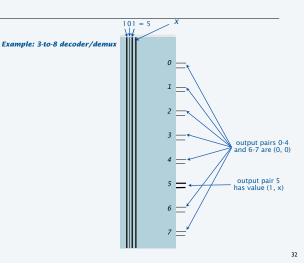
- Turn on control wires to implement instructions.
- [Use opcode bits of instruction in IR.]



Decoder/demux

Decoder/demux

- *n* address inputs.
- 1 data input with value x.
- 2ⁿ output pairs.
- Addressed output *pair* has value (1, *x*).
- All other outputs are 0.



Decoder/demux

Decoder/demux

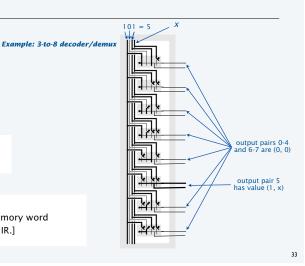
- n address inputs.
- 1 data input with value x.
- 2ⁿ output pairs.
- Addressed output *pair* has value (1, *x*).
- All other outputs are 0.

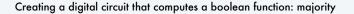
Implementation

• Add decoder output to demux.

Application (next lecture)

- Access and control write of memory word
- [Use addr bits of instruction in IR.]

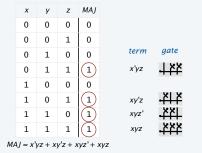


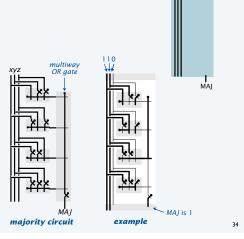


Use the truth table

- Identify rows where the function is 1.
- Use a generalized AND gate for each.
- OR the results together.

Example 1: Majority function





Creating a digital circuit that computes a boolean function: odd parity

Use the truth table • Identify rows where the function is 1. • Use a generalized AND gate for each. • OR the results together. multiwav **Example 2: Odd parity function** OR gate ODD х z 0 0 0 0 term gate (1)ЩĶ 0 0 1 x'y'z 나지 0 1 0 (1)x'yz'0 1 0 1 (1)1 0 0 -411xy'z' 1 0 1 0 1 1 0 0 (1)<u>. XXX</u> 1 1 1 xyz ODD is 0 ODD ODD = x'y'z + x'yz' + xy'z' + xyzexample odd parity circuit

Combinational circuit design: Summary

Problem: Design a circuit that computes a given boolean function.

Ingredients

- OR gates.
- NOT gates. 🔨
- NOR gates. Use to make generalized AND gates
- Wire.

ODD

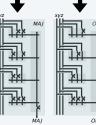
35

Method

- Step 1: Represent input and output with Boolean variables.
- Step 2: Construct truth table to define the function.
- Step 3: Identify rows where the function is 1.
- Step 4: Use a generalized AND for each and OR the results.

Bottom line (profound idea): Yields a circuit for ANY function. Caveat: Circuit might be huge (stay tuned).

x	y	z	MAJ	x	y	z	ODD
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	
0	1	0	0	0	1	0	
0	1	1		0	1	1	0
1	0	0	0	1	0	0	
1	0	1		1	0	1	0
1	1	0		1	1	0	0
1	1	1		1	1	1	



Pop quiz on combinational circuit design

Q. Design a circuit to implement XOR(x, y).

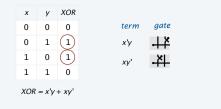
Pop quiz on combinational circuit design

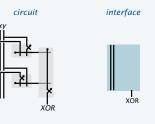
Q. Design a circuit to implement XOR(x, y).

A. Use the truth table

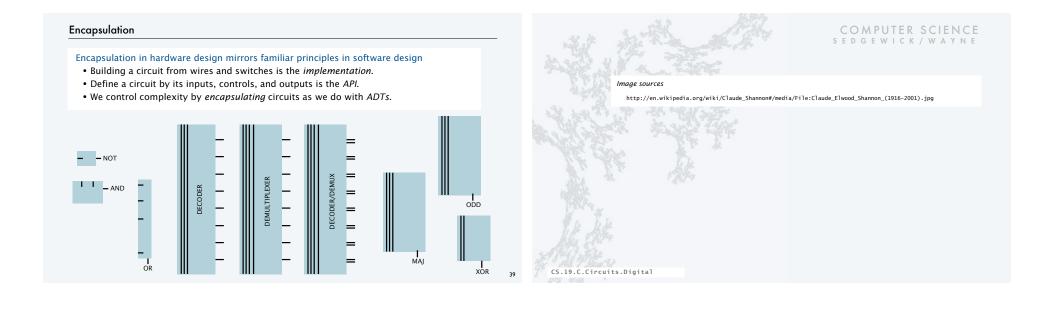
- Identify rows where the function is 1.
- Use a generalized AND gate for each.
- OR the results together.

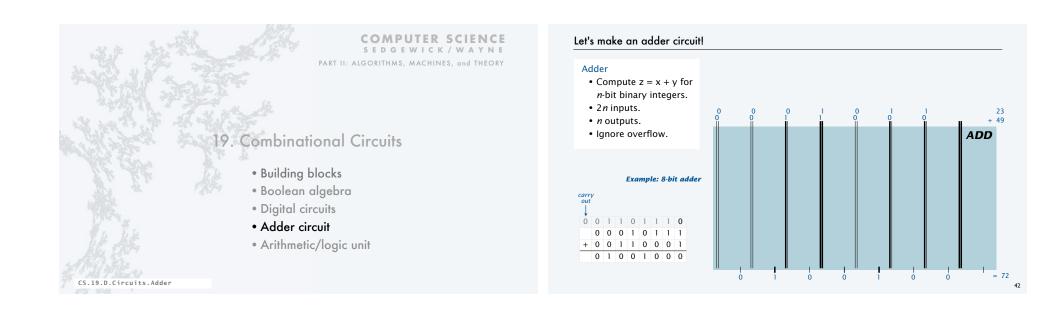
XOR function

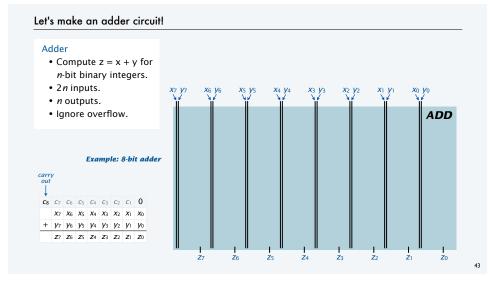


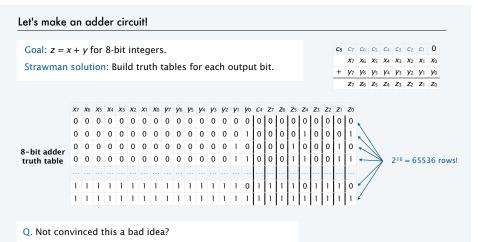


38





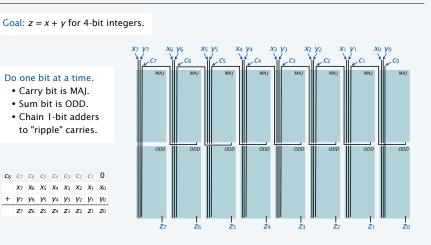




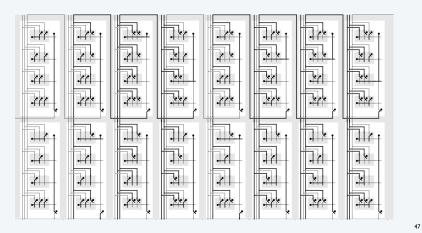
A. 128-bit adder: 2²⁵⁶ rows >> # electrons in universe!

Goal: z =	x +	<i>y</i> for	8-bi	it inte	gers.					C 8	C7	С6	C5	С4	Сз	C2	Cı	0
Do one b	it at	a tin	ne.			A surprise!					X 7							
• Build	truth	ı tab	le fo	r carr	y bit.	Carry bit is I	MAJ.			+	y 7 Z 7	_	_	_	_	-	_	-
• Build						• Sum bit is O	-				27	26	25	Z 4	23	22	21	20
	Xi	y i	Ci	C <i>i</i> +1	MAJ		Xi	y i	Ci	Zi	0	DD)					
	0	0	0	0	0		0	0	0	0		0						
	0	0	1	0	0		0	0	1	1		1						
	0	1	0	0	0		0	1	0	1		1						
carry bit	0	1	1	1	1	sum bit	0	1	1	0		0						
	1	0	0	0	0		1	0	0	1		1						
	1	0	1	1	1		1	0	1	0		0						
	1	1	0	1	1		1	1	0	0		0						
	1	1	1	1	1		1	1	1	1		1						

Let's make an adder circuit!



An 8-bit adder circuit



Layers of abstraction

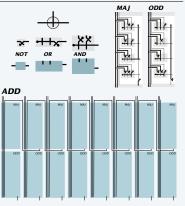
Lessons for software design apply to hardware

- Interface describes behavior of circuit.
- Implementation gives details of how to build it.
- Exploit understanding of behavior at each level.

Layers of abstraction apply with a vengeance

- On/off.
- Controlled switch. [relay, pass transistor]
- Gates. [NOT, OR, AND]
- Boolean functions. [MAJ, ODD]
- Adder.
- Arithmetic/Logic unit (next).
- CPU (next lecture, stay tuned).

Vastly simplifies design of complex systems and enables use of new technology at any layer



48

51

Next layer of abstraction: modules, busses, and control lines

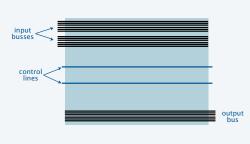
Basic design of our circuits

- Organized as modules (functional units of TOY: ALU, memory, register, PC, and IR).
- Connected by *busses* (groups of wires that propagate information between modules).
- Controlled by *control lines* (single wires that control circuit behavior).

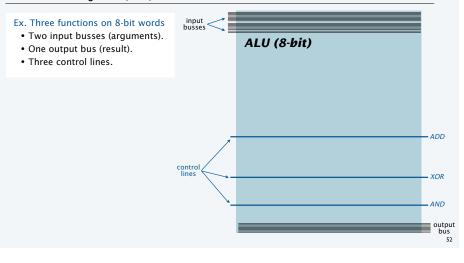
Conventions

- Bus inputs are at the top, input connections are at the left.
- Bus outputs are at the bottom, output connections are at the right.
- Control lines are blue.

These conventions make circuits easy to understand. (Like style conventions in coding.)



Arithmetic and logic unit (ALU) module



Arithmetic and logic unit (ALU) module

Ex. Three functions on 8-bit words

- Two input busses (arguments)
- One output bus (result).
- Three control lines.
- Left-right shifter circuits omitted (see book for details).

Implementation

- · One circuit for each function
- Compute all values in parallel

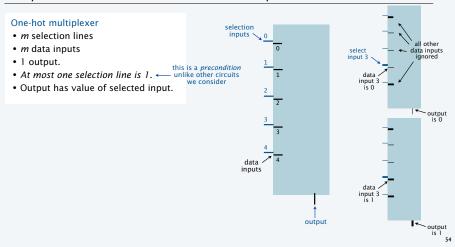
Q. How do we select desired output?

A. "One-hot muxes" (see next slide)

"Calculator" at the heart of your computer.

vords	input busses				 				
ents).									
mitted									
n.									
lel.	/							** Tk.	- ADD
output?	control		74)	74 (*	74-) (#	74-) (#	74.) (#		- XOR
slide).		*	*	*	7#~) (#	(66 1	1 66 1	74-)	- AND
ur compi	uter.					l (#			output bus
	V								53

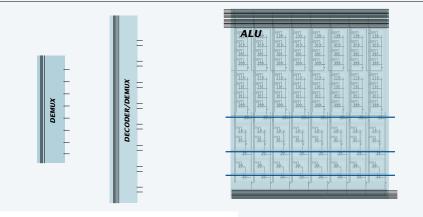
A simple and useful combinational circuit: one-hot multiplexer



A simple and useful combinational circuit: one-hot multiplexer

multiway OR gate One-hot multiplexer • *m* selection lines • *m* data inputs seler AND ag 1 output. • At most one selection line is 1. dat npu • Output has value of selected input. output is 0 Implementation • AND corresponding selection and data inputs. • OR all results (at most one is 1). Applications • Arithmetic-logic unit (previous slide). • Main memory (next lecture). input Important to note. No direct connection from input to output. output is 1 a virtual selection switch

Summary: Useful combinational circuit modules



Next: Registers, memory, connections, and control.

