

Wires

Wires propagate on/off values

- ON (1): connected to power.
- OFF (0): not connected to power
- Any wire connected to a wire that is ON is also ON .
- Drawing convention: "flow" from top, left to bottom, right.

Controlled Switch

Switches control propagation of on/off values through wires

- Simplest case involves two connections: control (input) and output.
- control OFF: output ON
- control ON: output OFF

Controlled switch: example implementation

A relay is a physical device that controls a switch with a magnet

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.

Controlled Switch

Switches control propagation of on/off values through wires.

- General case involves three connections: control input, data input and output.
- control OFF: output is connected to input
- control $O N$: output is disconnected from input

Idealized model of pass transistors found in real integrated circuits.

First level of abstraction

switches and wires model provides separation between physical world and logical world.

- We assume that switches operate as specified
- That is the only assumption.
- Physical realization of switch is irrelevant to design.

Physical realization dictates performance

- Size.
- Speed.
- Speed

New technology immediately gives new computer.
Better switch? Better computer.

Basis of Moore's law.

Switches and wires: a first level of abstraction

Switches and wires: a first level of abstraction

VLSI $=$ Very Large Scale Integration

Technology

Deposit materials on substrate.

Key properties

Lines are wires.
Certain crossing lines are controlled switches.
Key challenge in physical world
Fabricating physical circuits with
billions of wires and controlled switches
Key challenge in "abstract" world
Understanding behavior of circuits with billions of wires and controlled switches

Bottom line. Circuit $=$ Drawing (!)

Circuit anatomy

Image sources

http://upload.wikimedia.org/wikipedia/commons/f/f4/1965_c1960s_vacuum_tube\%2C_7025A-12AX7A\%2C_0C\%2C_Philips\%2C_Creat_Britain.jpg http://electronics. howstuffworks.com/relay. htm

$$
x y 8^{2}+25
$$

COMPUTER SCIENCE
SEDGEWICK/WAYNE
PART II: AIGORITHMS, MACHINES, and THEORY

19. Combinational Circuits

- Building blocks
- Boolean algebra
- Digital circuits
- Adder circuit
- Arithmetic/logic unit

Boolean algebra

Developed by George Boole in 1840s to study logic problems

- Variables represent true or false (1 or 0 for short).
- Basic operations are AND, OR, and NOT (see table below).

Widely used in mathematics, logic and computer science.

Truth tables

A truth table is a systematic way to define a Boolean function

- One row for each possible set of arguments
- Each row gives the function value for the specified arguments.
- N inputs: 2^{N} rows needed.

Truth table proofs

Truth tables are convenient for establishing identities in Boolean logic

- One row for each possibility.
- Identity established if columns match.

Proofs of DeMorgan's laws

			(NOR					NOR
x	y	xy	(xy)	x	y	x^{\prime}	y^{\prime}	' + y^{\prime}	x	y	$x+y$	$(x+$	x	y	x^{\prime}	y^{\prime}	$x^{\prime} y^{\prime}$
0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	1	1	1
0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	1	0	0
1	0	0	1	1	0	0	1	1	1	0	1	0	1	0	0	1	0
1	1	1	0	1	1	0	0	0	1	1	1	0	1	1	0	0	0

All Boolean functions of two variables

Q. How many Boolean functions of two variables?
A. 16 (all possibilities for the 4 bits in the truth table column).

Truth tables for all Boolean functions of 2 variable

| x | y | ZERO | AND | | x | | y | XOR | OR | NOR | EQ | $\rightarrow y$ | | $-x$ | | NAND | ONE |
| :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Universality of AND, OR and NOT

Every Boolean function can be represented as a sum of products

- Form an AND term for each 1 in Boolean function.
- OR all the terms together

x	y	z	MAJ	$x^{\prime} y z$	$x y^{\prime} z$	$x y z '$		
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	(1)	(1)	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	(1)	0	(1)	0	0	1
1	1	0	1)	0	0	(1)	0	1
1	1	1	(1)	0	0	0	(1)	1
Expressing MAJ as a sum of products								

Def. A set of operations is universal if every Boolean function can be expressed using just those operations.

Fact. \{ AND, OR, NOT \} is universal.

Functions of three and more variables

Q. How many Boolean functions of three variables?
A. 256 (all possibilities for the 8 bits in the truth table column).

x	y	z	AND	OR	NOR MAJ	ODD	
0	0	0	0	0	1	0	0
0	0	1	0	1	0	0	1
0	1	0	0	1	0	0	1
0	1	1	0	1	0	1	0
1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	0
1	1	0	0	1	0	1	0
1	1	1	1	1	0	1	1

Examples	
AND	logical AND
OR	logical OR
NOR	logical NOR
MAJ	majority
ODD	odd parity

$$
\text { all extend to } N \text { variables }
$$

0 iff any inputs is 0 (1 iff all inputs 1) 1 iff any input is 1 (0 iff all inputs 0) 0 iff any input is 1 (1 iff all inputs 0) 1 iff more inputs are 1 than 0 1 iff an odd number of inputs are
Q. How many Boolean functions of N variables?
number of Boolean functions with N variables
$2^{4}=16$
$2^{8}=256$
$2^{16}=65,536$
$2^{32}=4,294,967,296$
$264=18,446,744,073,709,551,616$

COMPUTER SCIENCE
SEDGEWICK/WAYNE
PART II: ALGORITHMS, MACHINES, and THEORY

19. Combinational Circuits

- Building blocks
- Boolean algebra
- Digital circuits
- Adder circuit
- Arithmetic/logic unit

A basis for digital devices

Claude Shannon connected circuit design with Boolean algebra in 1937.
" Possibly the most important, and also the most famous, master's thesis of the [20th]

- Howard Gardner

Key idea. Can use Boolean algebra to systematically analyze circuit behavior

Multiway OR gates

OR gates with multiple inputs.

- 1 if any input is 1 .
- 0 if all inputs are 0

Multiway generalized AND gates

Multiway generalized AND gates.

- l for exactly 1 set of input values.
- 0 for all other sets of input values
generalized

Pop quiz on generalized AND gates

Q. Give the Boolean function computed by these gates.
Q. Also give the inputs for which the output is 1 .

$u v^{\prime} w x v^{\prime z}$
101101

Get the idea? If not, replay this slide, like flash cards

Note. From now on, we will not label these gates.

```
##x'y'z' 000
+%yz
```



```
.+yz
&&|
&/4 xy'z 101
卢技xyz'110
.646}xyz 1
```


Pop quiz on generalized AND gates

Q. Give the Boolean function computed by these gates
Q. Also give the inputs for which the output is 1 .

A useful combinational circuit: decoder

Decoder

A useful combinational circuit: decoder

Decoder

- n input lines (address).
- 2^{n} outputs.
- Addressed output is 1 .
- All other outputs are 0 .
Implementation 3 -to-8 decoder
- Use all 2^{n} generalized AND gates with n inputs.
- Only one of them matches the input address.
Application (next lecture)
- Select a memory word for read/write.
- [Use address bits of instruction from IR.]
- n input lines (address)
-

Addressed output is

Implementation

- Use all 2^{n} generalized AND gates with n inputs.
- Select a memory word for read/write
- [Use address bits of instruction from IR.]

Another useful combinational circuit: demultiplexer (demux)

Demultiplexer

- n address inputs.
- 1 data input with value x.
- 2^{n} outputs.
- Addressed output has value x.
- All other outputs are 0 .
Implementation 8 demux
- Start with decoder.
- Add AND x to each gate.
Application (next lecture)
- TUse on control wires to implement instructions.

Another useful combinational circuit: demultiplexer (demux)

Demultiplexer

- n address inputs.
- 1 data input with value x.
- 2^{n} outputs.
- Addressed output has value x.
- All other outputs are 0 .

Decoder/demux

Decoder/demux

- n address inputs
- 1 data input with value x
- 2^{n} output pairs.
- Addressed output pair has
value ($1, x$).
- All other outputs are 0 .

Decoder/demux

Decoder/demux

- n address inputs.
- 1 data input with value x
- 2^{n} output pairs.
- Addressed output pair has
value ($1, x$).
- All other outputs are 0 .

Implementation

- Add decoder output to demux.

Application (next lecture)

- Access and control write of memory word
- [Use addr bits of instruction in IR.]

33

Creating a digital circuit that computes a boolean function: odd parity

Use the truth table

- Identify rows where the function is 1
- Use a generalized AND gate for each.
- OR the results toqether.

0	0	0	0	term	gate
0	0	1	(1)	$x^{\prime} y^{\prime} z$	H安
0	1	0	(1)	$x^{\prime} z^{\prime}$	+
0	1	1	0		
1	0	0	(1)	$x y^{\prime} z^{\prime}$	¢
1	0	1	0		
1	1	0	0		
1	1	1	(1)	$x y z$	4x4

$O D D=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$

Example: 3-to-8 decoder/demux

Creating a digital circuit that computes a boolean function: majority

Use the truth table

- Identify rows where the function is 1 .
- Use a generalized AND gate for each.
- OR the results toaether.
Example 1: Majority function
$x=1$
- Identify rows where the function is 1 .
- Use a generalized AND gate for each.

Example 1: Majority function
majority circuit

Combinational circuit design: Summary

Problem: Design a circuit that computes a given boolean function.

Ingredients

- OR gates
- NOT gates.
- NOR gates. \triangle use to make generalized AND gates
- Wire.

Method

- Step 1: Represent input and output with Boolean variables.
- Step 2: Construct truth table to define the function.
- Step 3: Identify rows where the function is 1.
- Step 4: Use a generalized AND for each and OR the results.

Bottom line (profound idea): Yields a circuit for ANY function. Caveat: Circuit might be huge (stay tuned).

Pop quiz on combinational circuit design

Q. Design a circuit to implement $\operatorname{XOR}(x, y)$.

Pop quiz on combinational circuit design

Q. Design a circuit to implement $\operatorname{XOR}(x, y)$.
A. Use the truth table

- Identify rows where the function is 1 .
- Use a generalized AND gate for each.
- OR the results toqether.

Encapsulation

Encapsulation in hardware design mirrors familiar principles in software design

- Building a circuit from wires and switches is the implementation
- Define a circuit by its inputs, controls, and outputs is the API.
- We control complexity by encapsulating circuits as we do with ADTs

- - NOT

1 I -AND

COMPUTER SCIENCE SEDGEWICK/WAYNE

\$ 19. Combinational Circuits

- Building blocks
- Boolean algebra
- Digital circuits

- Adder circuit

- Arithmetic/logic unit

Adder

- Compute $z=x+y$ for
n-bit binary integers.
- $2 n$ inputs.
- n outputs.
- Ignore overflow.

Example: 8-bit adder
carry
out
$\begin{array}{lllllllll}\downarrow & & 1 & 1 & \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}$

0	0	1	1	0	0	0	1
0	1	0	0	1	0	0	0

Let's make an adder circuit!

Adder

- Compute $z=x+y$ for
n-bit binary integers.
- $2 n$ inputs.
- n outputs.
- Ignore overflow.

Example: 8-bit adder carry
out
\downarrow
\downarrow

c_{8}	c_{7}	c_{6}	c_{5}	c_{4}	c_{3}	c_{2}	c_{1}

$\begin{array}{llllllll}x_{7} & x_{6} & x_{5} & x_{4} & x_{3} & x_{2} & x_{1} & x_{6}\end{array}$

$+y_{7} y_{6} y_{5} y_{4} y_{3} y_{2} y_{1} y_{0}$
$z_{7} z_{6} z_{5} z_{4} z_{3} z_{2} z_{1} z_{0}$

Let's make an adder circuit!

Q. Not convinced this a bad idea?
A. 128 -bit adder: 2256 rows >> \# electrons in universe!

Let's make an adder circuit

Goal: $z=x+y$ for 8 -bit integers.
Do one bit at a time.

- Build truth table for carry bit.
- Build truth table for sum bit.

A surprise!

- Carry bit is MAJ.
- Sum bit is ODD.

c_{8}	c_{7}	c_{6}	c_{5}	c_{4}	c_{3}	c_{2}	c_{1}

$\begin{array}{llllllll}x_{7} & x_{6} & x_{5} & x_{4} & x_{3} & x_{2} & x_{1} & x_{0}\end{array}$ | $+y_{7} y_{6} \quad y_{5} y_{4} \quad y_{3} y_{2} y_{1} y_{0}$ |
| :--- |
| $z_{7} z_{6} z_{5} z_{4} z_{3} z_{2} z_{1} z_{0}$ |

Buld truth table for sum bit.

sum bit | |
| :---: |
| x_{i} |$y_{i} y_{i} c_{i} \quad z_{i} \quad$ ODD

Let's make an adder circuit!

Goal: $z=x+y$ for 4-bit integers.

Do one bit at a time.

- Carry bit is MAJ.
- Sum bit is ODD.
- Chain 1-bit adders to "ripple" carries.
$\begin{array}{llllllll}c_{8} & c_{7} & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1}\end{array} 0$

$y_{7} y_{6} y_{5} y_{4} y_{3} y_{2} y_{1} y_{0}$
$z_{7} z_{6} z_{5} z_{4} z_{3} z_{2} z_{1} z_{0}$

An 8-bit adder circuit

Layers of abstraction

Lessons for software design apply to hardware

- Interface describes behavior of circuit.
- Implementation gives details of how to build it.
- Exploit understanding of behavior at each level.

Layers of abstraction apply with a vengeance - On/off.

- Controlled switch. [relay, pass transistor]
- Gates. [NOT, OR, AND]
- Boolean functions. [MAJ, ODD]
- Adder.
- Arithmetic/Logic unit (next)
- CPU (next lecture, stay tuned).

Vastly simplifies design of complex systems and enables use of new technology at any layer

COMPUTER SCIENCE
SEDGEWICK/WAYNE

COMPUTER SCIENC SEDGEWICK/WAYNE PART II: ALGORITHMS, MACHINES, and THEORY

19. Combinational Circuits

- Building blocks
- Boolean algebra
- Digital circuits
- Adder circuit
- Arithmetic/logic unit

Arithmetic and logic unit (ALU) module

Ex. Three functions on 8 -bit words - Two input busses (arguments).

- One output bus (result)
- Three control lines.

Arithmetic and logic unit (ALU) module

Ex. Three functions on 8 -bit words

- Two input busses (arguments).
- One output bus (result).
- Three control lines.
- Left-right shifter circuits omitted (see book for details).

Implementation

- One circuit for each function.
- Compute all values in parallel.
Q. How do we select desired output?
A. "One-hot muxes" (see next slide)
"Calculator" at the heart of your computer.

A simple and useful combinational circuit: one-hot multiplexer

One-hot multiplexer
 - m selection lines

- m data inputs
- 1 output.
- At most one selection line is 1 .
- Output has value of selected input.

Implementation

- AND corresponding selection and data inputs.
- OR all results (at most one is 1).

Applications

- Arithmetic-logic unit (previous slide).
- Main memory (next lecture).

A simple and useful combinational circuit: one-hot multiplexer

One-hot multiplexer

- m selection lines
- m data inputs
- l output.
- At most one selection line is $1 _$this is a precondition

At most one selection line is $1 . \longleftarrow$ unike other circuit
we consider

- Output has value of selected input.

Summary: Useful combinational circuit modules

Next: Registers, memory, connections, and control.
19. Combinational

Circuits

