16. Intractability

Context

Fundamental questions

- What is a general-purpose computer? $\sqrt{ }$
- Are there limits on what we can do with digital computers? \checkmark
- Are there limits on what we can do with the machines we can build? \downarrow focus of today's lecture

A difficult problem

Traveling salesperson problem (TSP)

- Given: A set of N cities, distances between each pair of cities, and a threshold M.
- Problem: Is there a tour through all the cities of length less than M ?

Exhaustive search. Try all N ! orderings of the cities to look for a tour of length less than M

How difficult can it be?

Excerpts from a recent blog...
If one took the 100 largest cities in the US and wanted to travel them all, what is the distance of the shortest route? I'm sure there's a simple answer. Anyone wanna help? A quick google revealed nothing.

I don't think there's any substitute for doing it manually. Google the cities, then pull out your map and get to work. It shouldn't take longer than an hour. Edit: I didn't realize this was a standardized problem.

Writing a program to solve the problem would take 5 or 10 minutes for an average programmer. However, the amount of time the program would need to run is, well, a LONG LONG LONG time.

My Garmin could probably solve this for you. Edit: probably not.

Someone needs to write a distributed computing program to solve this IMO.

Reasonable questions about algorithms

Q. Which algorithms are useful in practice?

Model of computation

- Running time: Number of steps as a function of input size N.
- Poly-time: Running time less than $a N^{b}$ for some constants a and b
- Definitely not poly-time: Running time $\sim \mathcal{C}^{N}$ for any constant $c>1$.
- Specific computer generally not relevant (simulation uses only a polynomial factor).
"Extended Church-Turing thesis" (stay tuned)

Def (in the context of this lecture). An algorithm is efficient if it is poly-time for all inputs. \uparrow
outside this lecture: "guaranteed polynomial time" or just "poly-time"
Q. Can we find efficient algorithms for the practical problems that we face?

How difficult can it be?

Imagine an UBERcomputer (a giant computing device)...

- With as many processors as electrons in the universe...
- Each processor having the power of today's supercomputers...
- Each processor working for the lifetime of the universe...

quantity	value (conservative estimate)
electrons in universe	10^{79}
supercomputer instructions per second	10^{13}
age of universe in seconds	10^{17}

Q. Could the UBERcomputer solve the TSP for 100 cities with the brute force algorithm?
A. Not even close. $100!>10^{157} \gg 10^{79} 10^{13} 10^{17}=10^{109} \longleftarrow$ Would need 10^{48} UBERcomputers

Lesson. Exponential growth dwarfs technological change.

Reasonable questions about problems

Q. Which problems can we solve in practice?
A. Those for which we know efficient (quaranteed poly-time) algorithms

Definition. A problem is intractable if no efficient algorithm exists to solve it.
Q. Is there an easy way to tell whether a problem is intractable?
A. Good question! Focus of today's lecture.
\downarrow
Example 1: Sorting. Not intractable. (Insertion sort takes time proportional to N^{2}.)
Example 2: TSP. ??? (No efficient algorithm known, but no proof that none exists.)

Four fundamental problems

LSOLVE - Solve simultaneous linear equations. - Variables are real numbers.	$\begin{array}{rr} x_{1}+x_{2}= & 1 \\ 4 x_{0}+2 x_{2}= & 0.5 \\ 3 x_{1}+15 x_{2}= & 9 \end{array}$	$\begin{aligned} & \mathrm{x}_{0}=-.25 \\ & \mathrm{x}_{1}= \\ & \mathrm{x}_{2}=\quad .5 \\ & \hline \end{aligned}$
LP - Solve simultaneous linear inequalities. - Variables are real numbers.	$\begin{array}{rl} 48 x_{0}+16 x_{1}+119 x_{2} & \leq 88 \\ 5 x_{0}+4 x_{1}+35 x_{2} & \geq 13 \\ 15 x_{0} & 4 x_{1}+20 x_{2} \end{array}$	$\begin{aligned} & x_{0}=1 \\ & x_{1}=1 \\ & x_{2}=0.2 \end{aligned}$
ILP - Solve simultaneous linear inequalities. - Variables are 0 or 1.	$\begin{array}{llll} & \mathrm{x}_{1}+\mathrm{x}_{2} \geq & 1 \\ \mathrm{x}_{0} & +\mathrm{x}_{2} \geq & 1 \\ \mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2} \leq & 2 \end{array}$	$\begin{aligned} & x_{0}=0 \\ & x_{1}=1 \\ & x_{2}=1 \end{aligned}$
SAT - Solve simultaneous boolean sums. - Variables are true or false.	$\begin{array}{rlrl} \neg \mathrm{x}_{1} \vee \mathrm{x}_{2} & =\text { true } \\ \neg \mathrm{x}_{0} \vee \neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{2} & =\text { true } \\ \mathrm{x}_{1} \vee \neg \mathrm{x}_{2} & = & \text { true } \end{array}$	$\begin{aligned} & \mathrm{x}_{0}=\text { false } \\ & \mathrm{x}_{1}=\text { true } \\ & \mathrm{x}_{2}=\text { true } \end{aligned}$

SOLVE

- Solve simultaneous linear equations.

P

- Solve simultaneous linear inequalities.
- Variables are real numbers.
- Solve simultaneous linear inequalities.
- Variables are 0 or 1 .
- Solve simultaneous boolean sums.
- Variables are true or false.

Example of an instanc

$$
\begin{array}{rlr}
x_{1}+x_{2} & =1 \\
x_{0}+4 x_{1}-2 x_{2} & =0
\end{array}
$$

$$
3 x_{0}+4 x_{1}+33 x_{2} \geq
$$

$$
x_{2}=0 .
$$

$$
x_{1}+x_{2} \geq 1 \quad x_{0}=
$$

$$
x_{0}+x_{1}+x_{2} \leq 2
$$

$$
\neg x_{0} \vee \neg x_{1} \vee \neg x_{2}=\text { true }
$$

$$
x_{1} \vee \neg x_{2}=\text { true }
$$

Intractability

Definition. An algorithm is efficient if it is poly-time for all inputs
Definition. A problem is intractable if no efficient algorithm exists to solve it.
Definition. A problem is tractable if it solvable by an efficient algorithm.

Turing taught us something fundamental about computation by

- Identifying a problem that we might want to solve
- Showing that it is not possible to solve it.

A reasonable question: Can we do something similar for intractability?
decidable : undecidable :: tractable : intractable
Q. We do not know efficient algorithms for a large class of important problems. Can we prove one of them to be intractable?

Reasonable questions

LSOLVE, LP, ILP, and SAT are all important problemsolving models with countless practical applications.
Q. Do we have efficient algorithms for solving them?
A. Difficult to discern, despite similarities (!)
\checkmark LSOLVE. Yes appropriate version of Caussian eimination
\checkmark LP. Yes. Ellipsoid algorithm (tour de force solution)
? IP. No polynomial-time algorithm known.
? SAT. No polynomial-time algorithm known.
Q. Can we find efficient algorithms for IP and SAT?
Q. Can we prove that no such algorithms exist?

LSOLVE

- Solve simultaneous linear equations.
- Variables are real numbers.

LP

- Solve simutaneous linear inequalities.
- Variables are real numbers.

ILP
Solve simultaneous linear inequalities

- Variables are 0 or 1 .

SAT
Solve simultaneous boolean sums.

- Variables are true or false.

```
Extended Church-Turing thesis.
    Resources used by all reasonable machines are within a polynomial factor of one another.
```


Remarks

- A thesis, not a theorem
- Not subject to proof.
- Is subject to falsification.

New model of computation or new physical process?

- Use simulation to prove polynomial bound.
- Example: TOY simulator in Java (see TOY lectures).
- Example: Java compiler in TOY.

Implications

- Validates exponential/polynomial divide.
- Enables rigorous study of efficiency.

Reasonable questions

- P and NP
- Poly-time reductions
- NP-completeness
- Living with intractability

Search problems

Search problem. Any problem for which an efficient algorithm exists to certify solutions.

Example: TSP

Set of cities, pairwise distances, and threshold M.

Definition. NP is the class of all search problems.

problem	description	instance I	solution S	algorithm
TSP (S, M)	Find a tour of cities in S of length < M	$\begin{gathered} 1+\sqrt{1}\} \\ \sqrt{\sim} \cdot\} \end{gathered}$	$\sqrt{2} \sqrt{3} \sqrt{7}$	Add up distances and check that the total is less than M
ILP (A, b)	Find a binary vector x that satisfies $A x \leq b$	$\begin{array}{rlll} & x_{1}+ & x_{2} \geq & 1 \\ x_{0} & \\ x_{0} & x_{2} \geq & 1 \\ x_{0}+ & x_{1}+ & x_{2} \leq & 2 \end{array}$	$\begin{aligned} & x_{0}=0 \\ & x_{1}=1 \\ & x_{2}=1 \end{aligned}$	plug in values and check each equation
SAT (A, b)	Find a boolean vector x that satisfies $A x=b$	$\begin{array}{rlrl} -x_{1} \vee x_{2} & =\text { true } \\ -x_{0} \vee \\ \vee x_{1} \vee-x_{2} & =t \text { true } \\ x_{1} \vee & x_{2} & =\text { truu } \end{array}$	$\begin{aligned} & x_{0}=\text { false } \\ & x_{1}=\text { true } \\ & x_{2}=\text { true } \end{aligned}$	plug in values and check each equation
FACTOR (M)	Find a nontrivial factor of the integer M	147573952589676412927	193707721	long division

Brute force search

Brute-force search. Given a search problem, find a solution by checking all possibilities.

problem	description	N (size)	number of
TSP (S, M)	Find a tour of cities in S of length < M	number of cities	$N!$
ILP (A, b)	Find a binary vector x that satisfies $A x \leq b$	number of variables	2^{N}
SAT (\dagger, b)	Find a boolean vector x that satisfies $A x=b$	number of variables	2^{N}
FACTOR (x)	Find a nontrivial factor of the integer M	number of digits in M	$10 \sqrt{ }$

Challenge. Brute-force search is easy to implement, but not efficient.

Types of problems

Search problem. Find a solution.
Decision problem. Does there exist a solution?
Optimization problem. Find the best solution.

Some problems are more naturally formulated in one regime than another.

"Find the shortest tour connecting all the cities."

The regimes are not technically equivalent, but conclusions that we draw apply to all three.
Note. Classic definitions of \mathbf{P} and $\mathbf{N P}$ are in terms of decision problems.

P

$$
\text { Definition. } \mathbf{P} \text { is the class of all tractable search problems. } \longleftarrow \begin{gathered}
\text { solvable by an efficient } \\
\text { (guaranteed poly-time) algorithn }
\end{gathered}
$$

problem	description	efficient algorithm
SORT (S)	Find a permutation that puts the items in S in order	Insertion sort, Mergesort
3-SUM (S)	Find a triple in S that sums to 0	Triple loop
LSOLVE (A , b)	Find a vector x that satisfies $A x=b$	Gaussian elimination*
LP (A, b)	Find a vector x that satisfies $A x \leq b$	Ellipsoid

Significance. Problems that scientists, engineers and applications programmers do solve.

Note. All of these problems are also in NP.

The central question

NP. Class of all search problems, some of which seem solvable only by brute force.
P. Class of search problems solvable in poly-time.

we can do for some problems.

Efficient algorithms exist for IP, SAT, FACTOR ... all problems in NP.

[^0]
Nondeterminism: another way to view the situation

A nondeterministic machine can choose among multiple options at each step and can guess the option that leads to the solution.

Example: Java.

Seems like a fantasy, but...

$P \neq N P$

- Intractable search problems exist.
- Nondeterministic machines would admit efficient algorithms.

P P
$\mathbf{P}=\mathbf{N} \mathbf{P}$
- No intractable search problems exist.
- Nondeterministic machines would be of no help!

Frustrating situation. No one has been able to prove that nondeterminism would help (!!)

Creativity: another way to view the situation

Creative genius versus ordinary appreciation of creativity.

Examples

- Mozart composes a piece of music; the audience appreciates it
- Wiles proves a deep theorem; a colleague checks it.
- Boeing designs an efficient airfoil; a simulator verifies it.
- Einstein proposes a theory; an experimentalist validates it

Computational analog. P vs NP

Frustrating situation. No one has been able to prove that creating a solution to a problem is more difficult than checking that it is correct.

Classifying problems

Q. Which problems are in \mathbf{P} ?
A. The ones that we're solving with efficient algorithms.

$$
\begin{aligned}
& \text { Can I solve it on my } \\
& \text { cellphone or do I need }
\end{aligned}
$$

Q. Which problems are intractable (in NP but not in \mathbf{P})?
A. Difficult to know (no one has found even one such problem).

Possible starting point: Assume that SAT is intractable (and hence $\mathbf{P} \neq \mathbf{N P}$

- Brute-force algorithm finds solution for any SAT instance
- No known efficient algorithm does so.

A reasonable assumption

Next. Proving relationships among problems.
Q. If $\mathbf{P} \neq \mathbf{N P}$ and SAT is intractable, which other problems are intractable?

Key point: poly-time reduction is transitive

If \mathbf{X} poly-time reduces to \mathbf{Y} and \mathbf{Y} poly-time reduces to \mathbf{Z}, then \mathbf{X} poly-time reduces to \mathbf{Z}

If $\mathbf{X} \rightarrow \mathbf{Y}$ and $\mathbf{Y} \rightarrow \mathbf{Z}$ then $\mathbf{X} \rightarrow \mathbf{Z}$

Poly-time reduction

Definition. Problem \mathbf{X} poly-time reduces to problem \mathbf{Y} if you can use an efficient solution to \mathbf{Y} to develop an efficient solution to \mathbf{X}.

Typical reduction: Given an efficient solution to \mathbf{Y}, solve \mathbf{X} by

- Using an efficient method to transform the instance of \mathbf{X} to an instance of \mathbf{Y}.
- Calling the efficient method that solves \mathbf{Y}.
- Using an efficient method to transform the solution of \mathbf{Y} to an solution of \mathbf{X}

Similar to using a library method in modular programming.

Note. Many ways to extend. (Example: Use a polynomial number of instances of \mathbf{Y}.)

Two ways to exploit reduction

To design an algorithm to solve a new problem \mathbf{X}

Not emphasized in this lecture

- Find a problem \mathbf{Y} with a known efficient algorithm that solves it.
- Poly-time reduce \mathbf{X} to \mathbf{Y}

The efficient algorithm for \mathbf{Y} gives an efficient algorithm for \mathbf{X} terested in details? Take a course in algorithms.

To establish intractability of a new problem \mathbf{Y} (assuming SAT is intractable)

- Find a problem \mathbf{X} with a known poly-time reduction from SAT.

Critical too
for this lecture.

- Poly-time reduce \mathbf{X} to \mathbf{Y}

An efficient algorithm for \mathbf{Y} would imply an efficient algorithm for \mathbf{X} (and SAT).

Example: SAT poly-time reduces to ILP

SAT

- Solve simultaneous boolean sums.
- Variables are true or false

$$
\begin{aligned}
&-x_{0} \vee x_{1} \vee x_{2}=\text { true } \\
& x_{0} \vee \neg-x_{1} \vee x_{2}=\text { true } \\
&-x_{0} \vee \neg x_{1} \vee \neg x_{2}=\text { true } \\
&-x_{0} \vee \neg x_{1} \vee x_{3}=\text { true } \\
& \text { An instance of SAT }
\end{aligned}
$$

$x_{0}=$ false
$x_{1}=$ true
$x_{2}=$ true
$x_{3}=$ false
solution

Implication. If SAT is intractable, so is ILP

More poly-time reductions from SAT

Still more poly-time reductions from SAT

COMPUTER SCIENCE SEDGEWICK/WAYNE
PART II: AIGORITHMS, MACHINES, and THEORY

19. Intractability

- Reasonable questions
- P and NP
- Poly-time reductions
- NP-completeness
- Living with intractability

```
CS.16.D.Intractability.NPcomplete
```

30y moss

NP-completeness

Definition. An NP problem is NP-complete if all problems in NP poly-time reduce to it.

Corollary. SAT is tractable if and only if $\mathbf{P}=\mathbf{N} \mathbf{P}$
Equivalent. Assuming that SAT is intractable is the same as assuming that $\mathbf{P} \neq \mathbf{N} \mathbf{P}$

Karp + Cook-Levin

Two possible universes

$\mathbf{P} \neq \mathbf{N P}$

- Intractable search problems exist.
- Nondeterminism would help.
- Computing an answer is more difficult
than correctly guessing it.
- Can prove a problem to be intractable by poly-time reduction from an NP-complete problem.

= NP

- No intractable search problems exist
- Nondeterminism is no help.
- Finding an answer is just as easy a correctly guessing an answer
- Guaranteed poly-time algorithms exist for all problems in NP.

Frustrating situation. No progress on resolving the question despite 40+ years of research.

NP. Class of all search problems, some of which seem solvable only by brute force
P. Class of search problems solvable in poly-time.

NP-complete. "Hardest" problems in NP
Intractable. Search problems not in P (if $\mathbf{P} \neq \mathbf{N P}$).

TSP, SAT, ILP, and thousands of other problems are NP-complete

Use theory as a guide

- An efficient algorithm for an NP-complete problem
would be a stunning scientific breakthrough (a proof that $\mathbf{P}=\mathbf{N P}$)
- You will confront NP-complete problems in your career.
- It is safe to assume that $\mathbf{P} \neq \mathbf{N} \mathbf{P}$ and that such problems are intractable
- Identify these situations and proceed accordingly.

Princeton CS building, west wall

Princeton CS building, west wall (closeup)

COMPUTER SCIENCE SEDGEWICK/WAYNE

- Reasonable questions
- P and NP
- Poly-time reductions
- NP-completeness
- Living with intractability

Living with intractability: Don't try to solve intractable problems

Understanding intractability: An example from statistical physics

1926: Ising introduces a mathematical model for ferromagnetism.

1930s: Closed form solution is a holy grail of statistical mechanics

1944: Onsager finds closed form solution to 2D version in tour de force.

1950s: Feynman and others seek closed form solution to 3D version.

2000: Istrail shows that 3D-ISING is NP-complete.

Bottom line. Search for a closed formula seems futile

Exploiting intractability: RSA cryptosystem

Modern cryptography applications

- Electronic banking.
- Credit card transactions with online merchants.
- Secure communications.
- [very long list]

RSA cryptosystem exploits intractability

- To use: Multiply/divide two N-digit integers (easy).
- To break: Factor a 2 N -digit integer (intractable?).

Living with intractability: look for solutions to real-world problem instances

Observation

- Worst-case inputs may not occur for practical problems
- Instances that do occur in practice may be easier to solve.

Reasonable approach: relax the condition of guaranteed poly-time algorithms.

SAT

- Chaff solves real-world instances with 10,000+ variables.
- Princeton senior independent work (!) in 2000

SP solution for 13,509 US cities
TSP

- Concorde routinely solves large real-world instances.
- 85,900-city instance solved in 2006

ILP

- CPLEX routinely solves large real-world instances.
- Routinely used in scientific and commercial applications.

Exploiting intractability: RSA cryptosystem
RSA cryptosystem exploits intractability

- To use: Multiply/divide two N-digit integers (easy).
- To break: Solve FACTOR for a $2 N$-digit integer (difficult)

Example: Factor this
212-digit integer
74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
0849362326389727650340282627689199641962511784399589
4330501275537001189809828673173273108930905525551
16877063299072396380786710086096962537934650563796359
Q. Would an efficient algorithm for FACTOR prove that $\mathbf{P}=\mathbf{N} \mathbf{P}$?
A. Unknown. It is in NP, but no reduction from SAT is known. equivalent statement:
"FACTOR is not known to be NP-complete"
Q. Is it safe to assume that FACTOR is intractable?
A. Maybe, but not as safe an assumption as for an NP-complete problem.

Fame and fortune through intractability

Factor this
 212-digit integer
 74037563479561712828046796097429573142593188889231289 0849362326389727650340282662768919964196251178439959
 $\$ 30,000$ prize 43305021275853701189680982867331732731089309005525051 claimed in July, 2012 43305021275853701189680982867331732731089309005525051 16877063299072396380786710086096962537934650563796359 claimed in July, 2012

Create an e-commerce company based on the difficulty of factoring

RSA
 RSA sold to EMC
 for $\$ 2.1$ billion in 2006

The Security Division of EMC

Resolve \mathbf{P} vs. NP

$\$ 1$ million prize
unclaimed since 2000 probably another $\$ 1$ million
for Turing award
plus untold riches for breaking

A final thought

Example: Factor this 212 -digit integer
7403756347956171282804679609742957314259318888923128908493623263897276503402826627689199641962511784399589
43305021275853701189680982867317327310893090055250511687706329092396380786710086096962537934650563796359
Q. Would an efficient algorithm for FACTOR prove that $\mathbf{P}=\mathbf{N P}$?
A. Unknown. It is in NP, but no reduction from SAT is known.
Q. Is it safe to assume that FACTOR is intractable?
A. Maybe, but not as safe an assumption as for an $\mathbf{N P}$-complete problem.
Q. What else might go wrong?

Theorem (Shor, 1994). An N-bit integer can be factored in N^{3} steps on a quantum computer.
Q. Do we still believe in the Extended Church-Turing thesis? $\longleftarrow \begin{aligned} & \text { Resources used by all reasonable machines } \\ & \text { are within a polynomial factor of one another }\end{aligned}$
A. Whether we do or not, intractability demands understanding.

Image sources

http://mw.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/1/1e/Adi_Shamir_at_TU_Darmstadt__(2013).jpg http://mw.google.com/imgres? imgurl=http://upload.wikimedia.org/wikipedia/commons/a/af/Len-mankin-pic.jpg

[^0]: Frustrating situation. Researchers believe that $\mathbf{P} \neq \mathbf{N P}$ but no one has been able to prove it (!!)

