
http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

15. Turing Machines

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, MAC HINES , and THEORY

Section 7.4

15. Turing Machines

•Context
•A simple model of computation
•Universality
•Computability
•Implications

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.15.A.Turing.Context

Universality and computability

3

Fundamental questions

• What is a general-purpose computer?

• Are there limits on the power of digital computers?

• Are there limits on the power of machines we can build?

Pioneering work at Princeton in the 1930s.

David Hilbert
1862�1943

Asked the questions

Kurt Gödel
1906�1978

Solved the math
problem

Alonzo Church
1903�1995

Solved the decision
problem

Alan Turing
1912�1954

Provided THE answers

Context: Mathematics and logic

4

Mathematics. Any formal system powerful enough to express arithmetic.

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Cannot prove contradictions like 2 + 2 = 5.
Decidable. An algorithm exists to determine truth of every statement.

Q. (Hilbert, 1900) Is mathematics complete and consistent?
A. (Gödel's Incompleteness Theorem, 1931) NO (!! !)

Q. (Hilbert's Entscheidungsproblem) Is mathematics decidable?
A. (Church 1936, Turing 1936) NO (!!)

Principia Mathematics 
Peano arithmetic 

Zermelo-Fraenkel set theory
.
.
.

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.15.A.Turing.Context

Image sources

 http://en.wikipedia.org/wiki/David_Hilbert#/media/File:Hilbert.jpg

 http://en.wikipedia.org/wiki/Kurt_Gödel#/media/File:Kurt_gödel.jpg

 http://en.wikipedia.org/wiki/Alonzo_Church#/media/File:Alonzo_Church.jpg

 http://en.wikipedia.org/wiki/Alan_Turing#/media/File:Alan_Turing_photo.jpg 15. Turing Machines

•Context
•A simple model of computation
•Universality
•Computability
•Implications

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.15.B.Turing.Machine

Starting point

7

Goals

• Develop a model of computation that encompasses all known computational processes.

• Make the model as simple as possible.

Characteristics

• Discrete.

• Local.

• States.

Example: A familiar computational process.

3 1 4 2

7 1 8 2

4

0

2

1

3

0

0

1

1

Previous lecture: DFAs

A DFA is an abstract machine that solves a pattern matching problem.

• A string is specified on an input tape (no limit on its length).

• The DFA reads each character on input tape once, moving left to right.

• The DFA lights "YES" if it recognizes the string, "NO" otherwise.
Each DFA defines a set of strings (all the strings that it recognizes).

8

YES

b b a a b b a b b

YES

NO

Previous lecture: DFA details and example

A DFA is an abstract machine with a finite number of states, each labelled Y or N and
transitions between states, each labelled with a symbol. One state is the start state.

• Begin in the start state.

• Read an input symbol and move to the indicated state.

• Repeat until the last input symbol has been read.

• Turn on the "YES" or "NO" light according to the label on the final state.

9

YES

b b a a b b a b b

YES

NO

YES

Y N Nb b

a a a

b

Does this DFA recognize
this string?

This lecture: Turing machines

A Turing machine (TM) is an abstract model of computation.

• A string is specified on a tape (no limit on its length).

• The TM reads and writes characters on the tape, moving left or right.

• The TM lights "YES" if it recognizes the string, "NO" otherwise.

• The TM may halt, leaving the result of the computation on the tape.

10

YESYES

NO

.

HALT

This lecture: Turing Machine details and example

A Turing Machine is an abstract machine with a finite number of states, each labeled Y, N,
H, L, or R and transitions between states, each labeled with a read/write pair of symbols.

• Begin in the start state.

• Read an input symbol, move to the indicated state and write the indicated output.

• Move tape head left if new state is labeled L, right if it is labeled R.

• Repeat until entering a state labeled Y, N, or H (and turn on associated light).

11

YES

1 0 1 1 0 0 1 1 1 # #

YES

NO

HALTHALTHL
1:0 #:1

R #:#

0:1

DFAs vs TMs

12

DFAs

• Can read input symbols from the tape.

• Can only move tape head to the right.

• Tape is finite (a string).

• One step per input symbol.

• Can recognize (turn on "YES" or "NO").

TMs

• Can read from or write onto the tape.

• Can move tape head either direction.

• Tape does not end (either direction).

• No limit on number of steps.

• Can also compute (with output on tape).

Similarities

• Simple model of computation.

• Input on tape is a finite string with symbols from a finite alphabet.

• Finite number of states.

• State transitions determined by current state and input symbol.

Differences

TM example 1: Binary decrementer

13

YES

1 0 1 0 1 0 0 0 0 # #

YES

NO

HALTHALTHL
0:1

R #:#

11110

1 0 1 0 1 0 0 0 0Input

Output 1 0 1 0 0 1 1 1 1

1:0

Note:
 x:x self-loops are omitted.

"Scan right until reading #"

TM example 1: Binary decrementer

14

YES

0 0 0 0 # #

YES

NO

HALTHL
0:1 #:#

R #:#

1111

Q. What happens when we try to decrement 0?

A. Doesn't halt! TMs can have bugs, too.

Fix to avoid infinite loop. Check for #.

1:0

"Scan left until
reading 0 or 1"

TM example 2: Binary incrementer

15

YES

1 0 1 0 0 1 1 1 1 # #

YES

NO

HALTHALTHL
1:0 #:1

R #:#

0:1

00001

1 0 1 0 0 1 1 1 1Input

Output 1 0 1 0 1 0 0 0 0

Note: This adds a 1 at the left as the
last step when incrementing 111...1

TM example 3: Binary adder (method)

16

To compute x + y

• Move right to right end of y.

• Decrement y.

• Move left to right end of x (left of +) .

• Increment x.

• Continue until y = 0 is decremented.

• Clean up by erasing + and 1s.

1 0 1 1 + 1 0 1 0 # #.

1 0 1 1 + 1 0 0 1 # #.

1 0 1 1 + 1 0 0 1 # #.

1 1 0 0 + 1 0 0 1 # #.

1 0 1 0 1 + 1 1 1 1 # #.
Found + when seeking 1? Just decremented 0.

1 0 1 0 1 # # # # # # #.
Clean up

TM example 3: Binary adder

17

YES

1 0 1 1 + 1 0 1 0 # #

YES

NO

HALTHALT

L

L
0:1

R

#:#

1:0 L

R H
1:#

#:#

+:+

#:1

0:1

+:#
Halt

Clean Up

Find +

Increment x

1:0

Decrement y

Find right end

1 0 1 1 + 1 0 0 1

1 1 0 0 + 1 0 0 1

1 0 1 0 1 + 1 1 1 1 #

. . .

1 0 1 1 + 1 0 1 0

1 0 1 1 + 1 0 0 1

1 0 1 0 1 # # # # # #

Simulating an infinite tape with two stacks

18

Q. How can we simulate a tape that is infinite on both ends?
A. Use two stacks, one for each end.

private Stack<Character> left;
private Stack<Character> right;

private char read()
{
 if (right.isEmpty()) return '#';
 else return right.pop();
}

private char write(char c)
{ right.push(c); }

private void moveRight()
{
 if (right.isEmpty())
 left.push('#')
 else left.push(right.pop());
}

private void moveLeft()
{
 if (left.isEmpty())
 right.push('#')
 else right.push(left.pop());
}

1 0 1 1 + 1 0 1 0 # #

to simulate TM tape,
need to call write()

exactly once after
each call on read()

1
0
1

1
+
1
0
1
0

#

move
right

move
left

0
1

1
1
+
1
0
0
1

#

"tape head" is top of right stack

empty? assume # is there

Simulating the operation of a Turing machine

19

public class TuringMachine
{
 private int state;
 private int start;
 private char[] action;
 private ST<Character, Integer>[] next;
 private ST<Character, Character>[] out;

 /* Stack code from previous slide */

 public TM(String filename)
 { /* Fill in data structures */ }

 public String simulate(String input)
 {
 state = start;
 for (int i = input.length()-1; i >= 0; i--)
 right.push(input.charAt(i));
 while (action[state] != 'H')
 {
 char c = read();
 write(out[state].get(c));
 state = next[state].get(c);
 if (action[state] == 'R') moveRight();
 if (action[state] == 'L') moveLeft();
 }
 return action[state];
 }
 public static void main(String[] args)
 { /* Similar to DFA's main() */ }
}

% more dec.txt
3 01# 0
R 0 0 1 0 1 #
L 1 2 2 1 0 #
H 2 2 2 0 1 #

% java TM dec.txt
000111
000110
010000
001111
000000
111111

0 R

1 L

2 H

action[]

0 1 #

0 0 0 1

1 1 2 2

2 2 2 2

next[]

HL
0:1

R #:# 1:0

0 1 #

0 0 1 #

1 1 0 #

2 0 1 #

out[]

0 1 2

#:#

entries in gray are implicit in graphical representation

fixes bug

states, alphabet, start

type, transitions, output
for each state

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.15.B.Turing.Machine

15. Turing Machines

•Context
•A simple model of computation
•Universality
•Computability
•Implications

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.15.C.Turing.Universality

Representing a Turing machine

22

Turing's key insight. A TM is nothing more than a finite sequence of symbols.

Implication. Can put a TM and its input on a TM tape.

Profound implication. We can use a TM to simulate the operation of any TM.

HL

0:1

R #:# 1:0
0 1 2

#:#

decrementer TM
3 01# 0
R 0 0 1 0 1 #
L 1 2 2 1 0 #
H 2 2 2 0 1 #

dec.txt

1 1 0 0 0 3 0 1 # 0 R 0 0 1 0 1 # L 1 2 1 1 0 # H 2 2 2 0 1 #

input Turing machine

Universal Turing machine (UTM)

23

Universal Turing machine. A TM that takes as
input any TM and input for that TM on a TM tape.

Result. Whatever would happen if that TM were to
run with that input (could loop or end in Y, N, or H).

Turing. Simulating a TM is a simple computational task, so there exists a TM to do it: A UTM.

Easier for us to think about. Implement Java simulator as a TM.

1 1 0 0 0 3 0 1 # 0 R 0 0 1. . .

YES

NO

HALTUTM

1 0 1 1 1 # # #. . .

YES

NO

HALTUTM

result that decrementer TM would produce

input to decrementer TM decrementer TM

Implementing a universal Turing machine

Java simulator gives a roadmap

• No need for a constructor as in Java because
everything is already on the tape.

• Simulating the infinite tape is a bit easier
than in Java because TM has an infinite tape.

• Critical part of the calculation is to update
state as indicated.

24

Want to see the details or build your own TM?
Use the booksite's TM development environment.

A 24-state UTM

Warning. TM development may be addictive. Amazed that it's only 24 states?
The record is 4 states, 6 symbols.

Universality

Definition. A task is computable if a Turing machine exists that computes it.

25

Theorem (Turing, 1936). It is possible to invent a single
machine which can be used to do any computable task.

Profound implications

• Any machine that can simulate a TM can simulate a universal Turing machine (UTM).

• Any machine that can simulate a TM can do any computable task.

• Don't need separate devices for solving scientific problems, playing music, email, . . .

UTM: A simple and universal model of computation.

YES

NO

.

HALTUTM

26

Conway's game of life

A cellular automaton

• Cells live and die in an infinite square grid.

• Time proceeds in discrete steps.

Survival. Each cell lives or dies depending on its 8 neighbors:

• Too few neighbors alive? (0 or 1) Die of loneliness.

• Number of living neighbors just right (2 or 3) Survive to next generation.

• Too many neighbors alive? (more than 3) Die of overcrowding.

Birth. Cell born when it has exactly 3 living neighbors.

time t

0 1 1 1 0 0
0 1 1 2 1 0
1 3 5 3 2 0
1 1 3 2 2 0
1 2 3 2 1 0
0 0 0 0 0 0

living neighbors time t+1

John Horton Conway

27

Conway's Game of Life

Lesson. Simple rules can lead to complicated behavior

Example 1. Glider

Example 3. Glider gun breeder (generates glider guns)

Example 2. Glider gun (generates gliders)

Note. YOU can write a program for the game of life (might have been an assignment).

A complex initial configuration for the game of life

Q. What happens with this starting configuration?

28

A. Anything we can compute!
(It is a UTM).

A profound connection to the real world

29

Church-Turing thesis. Turing machines can do anything that can be described by any
physically harnessable process of this universe: All computational devices are equivalent.

Remarks

• A thesis, not a theorem.

• Not subject to proof.

• Is subject to falsification.

New model of computation or new physical process?

• Use simulation to prove equivalence.

• Example: TOY simulator in Java.

• Example: Java compiler in TOY.

Implications

• No need to seek more powerful machines or languages.

• Enables rigorous study of computation (in this universe).

=

= YES

NO

.

HALT

30

Evidence in favor of the Church-Turing thesis

Evidence. Many, many models of computation have turned out to be equivalent (universal).

model of computation description

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism

untyped lambda calculus method to define and manipulate functions

recursive functions functions dealing with computation on integers

unrestricted grammars iterative string replacement rules used by linguists

extended Lindenmayer systems parallel string replacement rules that model plant growth

programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel

random access machines registers plus main memory, e.g., TOY, Pentium

cellular automata cells which change state based on local interactions

quantum computer compute using superposition of quantum states

DNA computer compute using biological operations on DNA

PCP systems string matching puzzles (stay tuned)

8 decades without a counterexample, and counting.

31

Example of a universal model: Extended Lindenmayer systems for synthetic plants C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.15.C.Turing.Universality

Image sources

 http://astronomy.swin.edu.au/~pbourke/modelling/plants

15. Turing Machines

•Context
•A simple model of computation
•Universality
•Computability
•Implications

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.15.D.Turing.Computability

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.

• N types of cards.

• No limit on the number of cards of each type.

• Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

34

Example 1 (N = 4).
BAB

A

0

A

ABA

1

AB

B

2

BA

B

3

Solution 1 (easy): YES.
A

ABA

1

BA

B

3

BAB

A

0

AB

B

2

A

ABA

1

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.

• N types of cards.

• No limit on the number of cards of each type.

• Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

35

Example 2 (N = 4).
BAB

A

0

A

BAB

1

AB

B

2

BA

A

3

Solution 2 (easy): NO. No way to match even the first character!

BAB

A

2

Challenge for the bored: Find a solution that starts with a card of type 0.

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.

• N types of cards.

• No limit on the number of cards of each type.

• Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

36

Example 3 (created by Andrew Appel).

X

1X

1

11A

A1

3

1

1

4

[A

[B

5

]

]

6

[

[

7

B1

1B

8

B]

A]

9

S[

S[11111X][

0

[1A]E

E

10

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.

• N types of cards.

• No limit on the number of cards of each type.

• Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

37

0 1 2 3

A reasonable idea. Write a program to take N card types as input and solve PCP.

4

. . .

N

A surprising fact. It is not possible to write such a program.

Another impossible problem

Halting problem. Write a Java program that reads in code for a Java static method f()  
and an input x, and decides whether or not f(x) results in an infinite loop.

38

Next. A proof that it is not possible to write such a program.

Example 1 (easy). Example 2 (difficulty unknown).

public void f(int x)
{
 while (x != 1)
 {
 if (x % 2 == 0) x = x / 2;
 else x = 3*x + 1;
 }
}

public void f(int x)
{
 while (x != 1)
 {
 if (x % 2 == 0) x = x / 2;
 else x = 2*x + 1;
 }
}

 f(7): 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

 f(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 ... -17 ...

Involves Collatz conjecture
(see Recursion lecture)

Halts only if x is a positive power of 2

Undecidability of the halting problem

Definition. A yes-no problem is undecidable if no Turing machine exists to solve it.
 (A problem is computable if a Turing machine does exist that solves it.)

39

Theorem (Turing, 1936). The halting problem is undecidable.

Profound implications

• There exists a problem that no Turing machine can solve.

• There exists a problem that no computer can solve.

• There exist many problems that no computer can solve (stay tuned).

Warmup: self-referential statements

Liar paradox (dates back to ancient Greek philosophers).

• Divide all statements into two categories: true and false.

• Consider the statement "This statement is false."

• Is it true? If so, then it is false, a contradiction.

• Is it false? If so, then it is true, a contradiction.

40

Source of the difficulty: Self-reference.

2 + 2 = 4
The earth is round.

Starfish have no brains.
Venus rotates clockwise.

...

2 + 2 = 99
The earth is flat.

Earthworms have 3 hearts.
Saturn rotates clockwise.

...

true false

This statement is false. This statement is false.

Logical conclusion. Cannot label all statements as true or false.

✗ ✗

Proof of the undecidability of the halting problem

41

Theorem (Turing, 1936). The halting problem is undecidable.

Proof outline.

• Assume the existence of a function halt(f, x) that solves the problem.

• Arguments: A function f and input x, encoded as strings.

• Return value: true if f(x) halts and false if f(x) does not halt.

• halt(f, x) always halts.

• Proof idea: Reductio ad absurdum: if any logical argument based on an
assumption leads to an absurd statement, then the assumption is false.

public boolean halt(String f, String x) 
{
 if (/* something terribly clever */) return true;
 else return false;
}

By universality, may as well use Java.
(If this exists, we could simulate it on a TM.)

Proof of the undecidability of the halting problem

42

Theorem (Turing, 1936). The halting problem is undecidable.

Proof.

• Assume the existence of a function halt(f, x)
that solves the problem.

• Create a function strange(f) that goes into an
infinite loop if f(f) halts and halts otherwise.

• Call strange() with itself as argument.

• If strange(strange) halts, then
strange(strange) goes into an infinite loop.

• If strange(strange) does not halt, then
strange(strange) halts.

• Reductio ad absurdum.

• halt(f, x) cannot exist.

public boolean halt(String f, String x) 
{
 if (/* f(x) halts */) return true;
 else return false;
}

Solution to the problem

public void strange(String f)
{
 if (halt(f, f))
 while (true) { } // infinite loop
}

A client

strange(strange)

A contradiction
halts?
does not halt?

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.15.D.Turing.Computability

15. Turing Machines

•Context
•A simple model of computation
•Universality
•Computability
•Implications

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.15.E.Turing.Implications

Implications of undecidability

45

Primary implication. If you know that a problem is undecidable...

...don't try to solve it!

What's the idea?

Hey, Alice. We came up with a
great idea at our hackathon.

We're going for startup funding.

An app that you can use to
make sure that any app you

download won't hang your phone!

Umm. I think that's
undecidable.

?

???

Will your app
work on itself ?

46

Implications for programming systems

Halting problem. Give a function f, does it halt on a given input x?
Totality problem. Give a function f, does it halt on every input x?
No-input halting problem. Give a function f with no input, does it halt?
Program equivalence. Do two functions f and g always return same value?
Uninitialized variables. Is the variable x initialized before it's used?
Dead-code elimination. Does this statement ever get executed?

Q. Why is debugging difficult?
A. All of the following are undecidable.

Q. Why are program development environments complicated?
A. They are programs that manipulate programs.

Prove each by reduction from the halting problem: A solution would solve the halting problem.

UNDECIDABLE

Another undecidable problem

47

Theorem (Church and Turing, 1936). The Entscheidungsproblem is undecidable.

The Entscheidungsproblem (Hilbert, 1928)

• Given a first-order logic with a finite number of additional axioms.

• Is the statement provable from the axioms using the rules of logic?

David Hilbert
1862�1943

Lambda calculus

• Formulated by Church in the 1930s to address the Entscheidungsproblem.

• Also the basis of modern functional languages.

Alonso Church
1903�1995

UNDECIDABLE

"Decision problem"

Another undecidable problem

48

Theorem (Post, 1946). Post's correspondence problem is undecidable.

UNDECIDABLE

Examples of undecidable problems from computational mathematics

49

Hilbert's 10th problem

• Given a multivariate polynomial f (x, y, z, ...).

• Does f have integral roots ? (Do there exist
integers x, y, z, such that f (x, y, z, ...) = 0 ?)

Definite integration

• Given a rational function f (x) composed of
polynomial and trigonometric functions.

• Does exist?

M(_, `, a) = �_�`a� + �_`� � _� � ��Ex. 1

M(�, �, �) = �YES

M(_, `) = _� + `� � �Ex. 2 NO

NO

� �

��
M(_)K_

YES

� �

��

cos(_)
� + _�

K_ =
�
LEx. 1

cos(_)
� + _�

Ex. 2
cos(_)
� � _�

UNDECIDABLE

UNDECIDABLE

Examples of undecidable problems from computer science

50

Optimal data compression

• Find the shortest program to produce a given string.

• Find the shortest program to produce a given picture.

Virus identification

• Is this code equivalent to this known virus?

• Does this code contain a virus?

UNDECIDABLE

UNDECIDABLE

produced by a 34-line Java program

Private Sub AutoOpen() 
On Error Resume Next  
If System.PrivateProfileString("", CURRENT_USER\Software
\Microsoft\Office\9.0\Word\Security", 
 "Level") <> "" Then
CommandBars("Macro").Controls("Security...").Enabled = False
. . .
For oo = 1 To AddyBook.AddressEntries.Count
 Peep = AddyBook.AddressEntries(x)
 BreakUmOffASlice.Recipients.Add Peep
 x = x + 1
 If x > 50 Then oo = AddyBook.AddressEntries.Count
Next oo
. . .
BreakUmOffASlice.Subject = "Important Message From " &
Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked for
... don't show anyone else ;-)"
. . .

Melissa virus (1999)

Turing's key ideas

51

The Turing machine. A formal model of computation.

Equivalence of programs and data. Encode both as strings and compute with both.

Universality. Concept of general-purpose programmable computers.

Church-Turing thesis. If it is computable at all, it is computable with a Turing machine.

Computability. There exist inherent limits to computation.

Turing's paper was published in 1936, ten years before Eckert and Mauchly worked on ENIAC (!)

John von Neumann read the paper...

Turing's paper in the Proceedings of the London Mathematical Society 
 "On Computable Numbers, With an Application to the Entscheidungsproblem"
was one of the most impactful scientific papers of the 20th century.

Alan Turing
1912�1954

Stay tuned

Alan Turing: the father of computer science

52

It was not only a matter of abstract mathematics, not only a play of
symbols, for it involved thinking about what people did in the physical
world…. It was a play of imagination like that of Einstein or von
Neumann, doubting the axioms rather than measuring effects…. What
he had done was to combine such a naïve mechanistic picture of the
mind with the precise logic of pure mathematics. His machines – soon

— John Hodges, in Alan Turing, the Enigma

= YES

NO

.

HALTUTM

A Google data center

A Universal Turing Machine

C O M P U T E R S C I E N C E
S E D G E W I C K / W A Y N E

CS.15.E.Turing.Implications

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

15. Turing Machines

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, MAC HINES , and THEORY

Section 7.4

