
http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

14. Introduction to
Theoretical CS

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, MAC HINES , and THEORY

Section 7.2

14. Introduction to Theoretical CS

•Overview
•Regular expressions
•DFAs
•Applications
•Limitations

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.17.A.Theory.Overview

Introduction to theoretical computer science

3

Fundamental questions

• What can a computer do?

• What can a computer do with limited resources?

General approach

• Don't talk about specific machines or problems.

• Consider minimal abstract machines.

• Consider general classes of problems.

Surprising outcome. Sweeping and relevant statements about all computers.

NO

YES

Why study theory?

4

In theory...

• Deeper understanding of computation.

• Foundation of all modern computers.

• Pure science.

• Philosophical implications.

In practice...

• Web search: theory of pattern matching.

• Sequential circuits: theory of finite state automata.

• Compilers: theory of context free grammars.

• Cryptography: theory of computational complexity.

• Data compression: theory of information.

• ...

 — Yogi Berra

" In theory there is no
difference  
 between theory and

Abstract machines

5

Abstract machine

• Mathematical model of computation.

• Each machine defined by specific rules for
transforming input to output.

• This lecture: Deterministic finite automata (DFAs).

Formal language

• A set of strings.

• Each defined by specific rules that characterize it.

• This lecture: Regular expressions (REs).

Questions for this lecture

• Is a given string in the language defined by a given RE, or not?

• Can a DFA help answer this question?

madam im adam
a man a plan a canal panama
able i was ere i saw elba

evil olive
go hang a salami im a lasagna hog

pull up if i pull up
...

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.17.A.Theory.Overview

•Overview
•Regular expressions
•DFAs
•Applications
•Limitations

14. Introduction to Theoreticaal CS

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

14. Introduction to Theoretical CS

CS.14.B.Theory.REs

A C2H2-type zinc finger domain signature is

• C followed by 2, 3, or 4 amino acids, followed by

• C followed by 3 amino acids, followed by

• L, I, V, M, F, Y, W, C, or X followed by 8 amino acids, followed by

• H followed by 3, 4, or 5 amino acids, followed by H.

Pattern matching

8

Example 1 (from computational biochemistry)

Q. Is this protein in the C2H2-type zinc finger domain?

 C A A S C G G P Y A C G G W A G Y H A G W H

A. Yes.
HC

An amino acid is represented by one of the characters CAVLIMCRKHDENQSTYFWP .

A protein is a string of amino acids.

C Y H3 3 38

Pattern matching problem. Is a given string an element of a given set of strings?

Pattern matching

9

Example 2 (from commercial computing)

Q. Which of the following are e-mail addresses? A.
rs@cs.princeton.edu ✓
not an e-mail address ✗

wayne@cs.princeton.edu ✓
eve@airport ✗

rs123@princeton.edu ✗

Challenge. Develop a precise description of the set of strings that are legal e-mail addresses.

An e-mail address is

• A sequence of letters, followed by

• the character "@", followed by

• followed by a nonempty sequence of lowercase letters, followed by the character "."

• [any number of occurrences of the previous pattern]

• "edu" or "com" (others omitted for brevity).

Oops, need to fix description

Pattern matching

10

Example 3 (from genomics)

A Fragile X Syndrome pattern is a genome having an occurrence of gcg, followed
by any number of cgg or agg triplets, followed by ctg.

Q. Does this genome contain a such a pattern?

 gcggcgtgtgtgcgagagagtgggtttaaagctggcgcggaggcggctggcgcggaggctg

A. Yes.

Note. The number of triplets correlates with Fragile X Syndrome, a common cause of mental retardation.

gcgcggaggcggctg

ctg end markgcg start mark

sequence of
cgg and agg

triplets

A genome is a string of nucleic acids.

A nucleic acid is represented by one of the letters a, c, t, or g.

Regular expressions

11

operation example RE matches
(IN the set)

does not match
(NOT in the set)

concatenation aabaab aabaab every other string

wildcard .u.u.u.
cumulus
jugulum

succubus
tumultuous

union aa | baab
aa
baab

every other string

closure ab*a
aa

abbba
ab

ababa

parentheses
a(a|b)aab

aaaab
abaab

every other string

(ab)*a
a

ababababa
aa

abbba

A regular expression (RE) is a notation for specifying a set of strings (a formal language).

An RE is either

• The empty set

• The empty string

• A single character or wildcard symbol

• An RE enclosed in parentheses

• The concatenation of two or more REs

• The union of two or more REs

• The closure of an RE 
(any number of occurrences)

More examples of regular expressions

12

The notation is surprisingly expressive.

regular expression matches does not match

.*spb.*

contains the trigraph spb
raspberry
crispbread

subspace
subspecies

a* | (a*ba*ba*ba*)*

multiple of three b’s

bbb
aaa

bbbaababbaa

b
bb

baabbbaa

.*0....

fifth to last digit is 0
1000234
98701234

111111111
403982772

.*gcg(cgg|agg)*ctg.*

fragile X syndrome pattern

...gcgctg...
...gcgcggctg...

...gcgcggaggctg...

gcgcgg
cggcggcggctg
gcgcaggctg

Generalized regular expressions

13

Additional operations further extend the utility of REs.

operation example RE matches does not match

one or more a(bc)+de
abcde
abcbcde

ade
bcde

character class [A-Za-z][a-z]*
lowercase 
Capitalized

camelCase
4illegal

exactly j [0-9]{5}-[0-9]{4}
08540-1321
19072-5541

111111111
166-54-1111

between j and k a.{2,4}b
abcb
abcbcb

ab
aaaaaab

negation [^aeiou]{6} rhythm decade

whitespace \s
any whitespace char

(space, tab, newline...) every other character

Note. These operations are all shorthand.  
 They are very useful but not essential.

RE: (a|b|c|d|e)(a|b|c|d|e)*
shorthand: (a-e)+

A C2H2-type zinc finger domain signature is

• C followed by 2, 3, or 4 amino acids, followed by

• C followed by 3 amino acids, followed by

• L, I, V, M, F, Y, W, C, or X followed by 8 amino acids, followed
by

• H followed by 3, 4, or 5 amino acids, followed by

Example of describing a pattern with a generalized RE

14

Q. Give a generalized RE for all such signatures.

HC C Y H

C A A S C G G P Y A C G G W A G Y H A G W HA. C.{2,4}C...[LIVMFYWCX].{8}H.{3,5}H

3 3 38"Wildcard" matches any of the letters
CAVLIMCRKHDENQSTYFWP

Example of a real-world RE application: PROSITE

15

Type an RE here

Another example of describing a pattern with a generalized RE

16

Q. Give a generalized RE for e-mail addresses.

A. [a-z]+@([a-z]+\.)+(edu|com)

An e-mail address is

• A sequence of letters, followed by

• the character "@", followed by

• the character "." , followed by a nonempty sequence of lowercase letters, followed by

• [any number of occurrences of the previous pattern]

• "edu" or "com" (others omitted for brevity).

Exercise. Extend to handle rs123@princeton.edu, more suffixes such as .org,  
 and any other extensions you can think of.

Next. Determining whether a given string matches a given RE.

Pop quiz 1 on REs

Q. Which of the following strings match the RE a*bb(ab|ba)* ?

17

1. abb

2. aaba

3. abba

4. bbbaab

5. cbb

6. bbababbab

is in the set
it describes

Pop quiz 2 on REs

18

Q. Give an RE for genes

• Characters are a, c, t or g.

• Starts with atg (a start codon).

• Length is a multiple of 3.

• Ends with tag, taa, or ttg (a stop codon).

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.14.B.Theory.REs

Image sources

 http://en.wikipedia.org/wiki/Homology_modeling#/media/File:DHRS7B_homology_model.png

•Overview
•Regular expressions
•DFAs
•Applications
•Limitations

14. Introduction to Theoreticaal CS

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

14. Introduction to Theoretical CS

CS.14.C.Theory.DFAs

Deterministic finite automata (DFA)

A DFA is an abstract machine that solves a pattern matching problem.

• A string is specified on an input tape (no limit on its length).

• The DFA reads each character on input tape once, moving left to right.

• The DFA lights "YES" if it recognizes the string, "NO" otherwise.
Each DFA defines a language (the set of strings that it recognizes).

21

YES

b b a a b b a b b

YES

NO

Deterministic finite automata details and example

A DFA is an abstract machine with a finite number states, each labeled Y or N, and
transitions between states, each labeled with a symbol. One state is the start state.

• Begin in the start state (denoted by an arrow from nowhere).

• Read an input symbol and move to the indicated state.

• Repeat until the last input symbol has been read.

• Turn on the "YES" or "NO" light according to the label on the current state.

22

YES

b b a a b b a b b

YES

NO

YES

Y N Nb b

a a a

b

Does this DFA recognize
this string?

A DFA is an abstract machine with a finite number states, each labeled Y or N, and
transitions between states, each labeled with a symbol. One state is the start state.

• Begin in the start state.

• Read an input symbol and move to the indicated state.

• Repeat until the last input symbol has been read.

• Turn on the "YES" or "NO" light according to the label on the current state.

Deterministic finite automata details and example

A DFA is an abstract machine with a finite number states, each labeled Y or N, and
transitions between states, each labeled with a symbol. One state is the start state.

• Begin in the start state.

• Read an input symbol and move to the indicated state.

• Repeat until the last input symbol has been read.

• Turn on the "YES" or "NO" light according to the label on the current state.

23

Does this DFA recognize
this string?

YES

b b a a b b a b

Y N Nb b

a a a

b
YES

NONO

Simulating the operation of a DFA

24

public class DFA
{
 private int start;
 private boolean[] action;
 private ST<Character, Integer>[] next;

 public DFA(String filename)
 { /* Fill in data structures */ }

 public boolean recognizes(String input)
 {
 int state = start;
 for (int i = 0; i < input.length(); i++)
 state = next[state].get(input.charAt(i));
 return action[state];
 }

 public static void main(String[] args)
 {
 DFA dfa = new DFA(args[0]);
 while (!StdIn.isEmpty())
 {
 input = StdIn.readString();
 if (dfa.recognizes(input)) StdOut.println("Yes");
 else StdOut.println("No");
 }
 }
}

Y N Nb b

a a a

b

% more b3.txt
3
ab
0
True 0 1
False 1 2
False 2 0

% java DFA b3.txt
bababa
Yes
bb
No
abbabbababbbabaaa
Yes
abbabbababbba
No

0 True

1 False

2 False

action[]

a b

0 0 1

1 1 2

2 2 0

next[]

symbol table to map
chars a, b, ... to next

state 0, 1, ...

states
alphabet

start state

0 1 2

1. Bitstrings that end in 1

2. Bitstrings with an equal number of occurrences of 01 and 10

3. Bitstrings with more 1s than 0s

4. Bitstrings with an equal number of occurrences of 0 and 1

5. Bitstrings with at least one 1

Pop quiz 1 on DFAs

Q. Which of the following strings does this DFA accept?

25

N Y1

0 0

1

1. Bitstrings that end in 1

2. Bitstrings with an equal number of occurrences of 01 and 10

3. Bitstrings with more 1s than 0s

4. Bitstrings with an equal number of occurrences of 0 and 1

5. Bitstrings with at least one 1

Pop quiz 2 on DFAs

Q. Which of the following strings does this DFA accept?

26

1. Bitstrings with at least one 1

2. Bitstrings with an equal number of occurrences of 01 and 10

3. Bitstrings with more 1s than 0s

4. Bitstrings with an equal number of occurrences of 0 and 1

5. Bitstrings that end in 1

N Y
0

1

1

0

Kleene's theorem

27

Equivalence theorem (Kleene)
Given any RE, there exists a DFA that accepts the same set of strings.
Given any DFA, there exists an RE that matches the same set of strings.

Remarkable fact. DFAs and REs are equivalent.

Two ways to define a set of strings (language)

• Regular expressions (REs).

• Deterministic finite automata (DFAs). Y N Nb b

a a a

b

DFA for S

S ≡ the set of ab strings where the number
of occurrences of b is a multiple of 3

a* | (a*ba*ba*ba*)*RE for S

Consequence: A way to solve the RE pattern matching problem

• Build the DFA corresponding to the given RE.

• Simulate the operation of the DFA.

Steven Kleene
1909�1994

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.14.C.Theory.DFAs

Image sources

 http://math.library.wisc.edu/images/skleene.gif

14. Introduction to Theoretical CS

•Overview
•Regular expressions
•DFAs
•Applications
•Limitations

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.14.D.Theory.Applications

An algorithm for the RE pattern matching problem?

• Build the DFA corresponding to the given RE.

• Simulate the operation of the DFA.

GREP: a solution to the RE pattern matching problem

"GREP" (Generalized Regular Expression Pattern matcher).

• Developed by Ken Thompson, who designed and implemented Unix.

• Indispensable programming tool for decades.

• Found in most development environments, including Java.

30

Ken Thompson
1983 Turing Award

Practical difficulty: The DFA might have exponentially many states.

A more efficient algorithm: use Nondeterministic Finite Automata (NFA)

• Build the NFA corresponding to the given RE.

• Simulate the operation of the NFA.

Interested in
details? Take a
course in
algorithms.

public class String

 ...

 boolean matches(String re) does this string match the given RE?

 ...

REs in Java

Java's String class implements GREP.

31

String re = "C.{2,4}C...[LIVMFYWC].{8}H.{3,5}H";
String zincFinger = "CAASCGGPYACGGAAGYHAGAH";
boolean test = zincFinger.matches(re);

HC C Y H

C A A S C G G P Y A C G G W A G Y H A G W H

3 3 38
true!

32

Java RE client example: Validation

public class Validate
{
 public static void main(String[] args)
 {
 String re = args[0];
 while (!StdIn.isEmpty())
 {
 String input = StdIn.readString();
 StdOut.println(input.matches(re));
 }
 }
} % java Validate "C.{2,4}C...[LIVMFYWC].{8}H.{3,5}H"

CAASCGGPYACGGAAGYHAGAH
true
CAASCGGPYACGGAAGYHGAH
false

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*"
ident123
true
123ident
false

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)"
wayne@cs.princeton.edu
true
eve@airport
false

Does a given string match a given RE?

• Take RE from command line.

• Take strings from StdIn.

Applications

• Scientific research.

• Compilers and interpreters.

• Internet commerce.

• ...

C2H2 type zinc finger domain

legal Java identifier

valid email address (simplified)

need quotes to
"escape" the shell

public class String

 ...

 String replaceAll(String re, String to) replace all occurrences of substrings matching RE with to

String[] split(String re) split the string around matches of the given RE

 ...

Beyond matching

Java's String class contains other useful RE-related methods.

• RE search and replace

• RE delimited parsing

33

String s = StdIn.readAll();
s = s.replaceAll("\\s+", " ");

Replace each sequence of at least one
whitespace character with a single space.

Examples using the RE "\\s+" (matches one or more whitespace characters).

Tricky notation (typical in string processing): \ signals "special character" so "\\" means "\"

and "\\s" means "\s"

String s = StdIn.readAll();
String[] words = s.split("\\s+");

Create an array of the words in StdIn  
(basis for StdIn.readAllStrings() method)

Way beyond matching

Java's Pattern and Matcher classes give fine control over the GREP implementation.

34

 public class Pattern

 ...

static Pattern compile(String re) parse the re to construct a Pattern

 Matcher matcher(String input)
create a Matcher that can find substrings
matching the pattern in the given input string

 ...

 public class Matcher

 ...

 boolean find()
set internal variable match to the next substring that matches
the RE in the input. If none, return false, else return true

 String group() return match

 String group(int k) return the kth group (identified by parens within RE) in match

 ...

[A sophisticated interface designed for pros, but very useful for everyone.]

Why not a constructor? 
Good question.

35

Java pattern matcher client example: Harvester

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester
{
 public static void main(String[] args)
 {
 String re = args[0];
 In in = new In(args[1]);
 String input = in.readAll();
 Pattern pattern = Pattern.compile(re);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 StdOut.println(matcher.group());

 }
} % java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt

gcgcggcggcggcggcggctg
gcgctg
gcgctg
gcgcggcggcggaggcggaggcggctg

% java Harvester "[a-z]+@([a-z]+\.)+(edu|com)" http://www.cs.princeton.edu/people/faculty
...
rs@cs.princeton.edu
...
wayne@cs.princeton.edu
...

Harvest information from input stream

• Take RE from command line.

• Take input from file or web page.

• Print all substrings matching RE.

harvest patterns from DNA

harvest email addresses from web for spam campaign.
(no email addresses on that site any more)

GREP and related facilities are built in to Java, Unix shell, PERL, Python ...

Applications of REs

Pattern matching and beyond.

• Compile a Java program.

• Scan for virus signatures.

• Crawl and index the Web.

• Process natural language.

• Access information in digital libraries.

• Search-and-replace in a word processors.

• Process NCBI and other scientific data files.

• Filter text (spam, NetNanny, ads, Carnivore, malware).

• Validate data-entry fields (dates, email, URL, credit card).

• Search for markers in human genome using PROSITE patterns.

• Automatically create Java documentation from Javadoc comments.

36virtually every computing environment

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.14.D.Theory.Applications

Image sources

 http://en.wikipedia.org/wiki/Ken_Thompson#/media/File:Ken_n_dennis.jpg

14. Introduction to Theoretical CS

•Overview
•Regular expressions
•DFAs
•Applications
•Limitations

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, MAC HINES , and THEORY

CS.14.E.Theory.Limitations

Summary

39

Programmers

• Regular expressions are a powerful pattern matching tool.

• Equivalent DFA/NFA paradigm facilitates implementation.

• Combination greatly facilitates real-world string data

Theoreticians

• REs provide compact descriptions of sets of strings.

• DFAs are abstract machines with equivalent descriptive power.

• Are there languages and machines with more descriptive power?

You

• CS core principles provide useful tools that you can exploit now.

• REs and DFAs provide an introduction to theoretical CS.

Basic questions

40

Q. Are there sets of strings that cannot be described by any RE?
A. Yes.

• Bitstrings with equal number of 0s and 1s (stay tuned).

• Strings that represent legal REs.

• Decimal strings that represent prime numbers.

• DNA strings that are Watson-Crick complemented palindromes.

• ...

Q. Are there sets of strings that cannot be described by any DFA?
A. Yes.

• Bit strings with equal number of 0s and 1s (see next slide).

• Strings that represent legal REs.

• Decimal strings that represent prime numbers.

• DNA strings that are Watson-Crick complemented palindromes.

• ...

The same question,
by Kleene's theorem

A limit on the power of REs and DFAs

41

Proposition. There exists a set of strings that cannot be described by any RE or DFA.

Proof sketch. No DFA can recognize the set of bitstrings with equal number of 0s and 1s.

• Assume that you have such a DFA, with N states.

• It recognizes the string with N + 1 0s followed by N + 1 1s.

• Some state is revisited when scanning the 0s in that string.

• Delete the substring of 0s between visits of that state.

• DFA recognizes that string, too.

• It does not have equal number of 0s and 1s.

• Proof by contradiction: the assumption that such a DFA exists must be false.

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 3 5 9 8 7 5 . . .

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 3 5 . . .

Ex. N = 10

Another basic question

42

Q. Are there abstract machines that are more powerful than DFAs?
A. Yes. A 1-stack DFA can recognize

• Bitstrings with equal number of 0s and 1s.

• Strings that represent legal REs.

YES

0 0 1 1 1 1 1 0 0 0

YES

NO

Proof. [details omitted]

can recognize more sets of strings

0
0
1
1
1

YES

Yet another basic question

43

Q. Are there abstract machines that are more powerful than a 1-stack DFA?
A. Yes. A 2-stack DFA can recognize

• Decimal strings that represent prime numbers.

• Strings that represent legal Java programs.

• ...

YES

0 0 1 1 1 1 1 0 0 0

YES

NO

[stay tuned for next lecture]

One last basic question

44

Q. Are there machines that are more powerful than a 2-stack DFA?
A. No! Not even a roomful of supercomputers (! ! !)

[stay tuned for next lecture]

NO

YES

two machines with equal computational power

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.14.E.Theory.Limitations

Image sources

 https://openclipart.org/detail/211418/thenanobel-programming

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

14. Introduction to
Theoretical CS

COMPUTER SC I ENCE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, MAC HINES , and THEORY

Section 7.2

