
CUBIC: A New TCP-Friendly High-Speed TCP Variant ∗

Sangtae Ha, Injong Rhee
Dept of Computer Science

North Carolina State University
Raleigh, NC 27695

{sha2,rhee}@ncsu.edu

Lisong Xu
Dept of Comp. Sci. and Eng.

University of Nebraska
Lincoln, Nebraska 68588

xu@cse.unl.edu

ABSTRACT
CUBIC is a congestion control protocol for TCP (transmis-
sion control protocol) and the current default TCP algo-
rithm in Linux. The protocol modifies the linear window
growth function of existing TCP standards to be a cubic
function in order to improve the scalability of TCP over
fast and long distance networks. It also achieves more eq-
uitable bandwidth allocations among flows with different
RTTs (round trip times) by making the window growth to
be independent of RTT – thus those flows grow their conges-
tion window at the same rate. During steady state, CUBIC
increases the window size aggressively when the window is
far from the saturation point, and the slowly when it is close
to the saturation point. This feature allows CUBIC to be
very scalable when the bandwidth and delay product of the
network is large, and at the same time, be highly stable and
also fair to standard TCP flows. The implementation of
CUBIC in Linux has gone through several upgrades. This
paper documents its design, implementation, performance
and evolution as the default TCP algorithm of Linux.

1. INTRODUCTION
As the Internet evolves to include many very high speed
and long distance network paths, the performance of TCP
was challenged. These networks are characterized by large
bandwidth and delay product (BDP) which represents the
total number of packets needed in flight while keeping the
bandwidth fully utilized, in other words, the size of the con-
gestion window. In standard TCP like TCP-Reno, TCP-
NewReno and TCP-SACK, TCP grows its window one per
round trip time (RTT). This makes the data transport speed
of TCP∗ used in all major operating systems including Win-
dows and Linux rather sluggish, to say the least, extremely
under-utilizing the networks especially if the length of flows
is much shorter than the time TCP grows its windows to
the full size of the BDP of a path. For instance, if the band-
width of a network path is 10 Gbps and the RTT is 100 ms,
with packets of 1250 bytes, the BDP of the path is around
100,000 packets. For TCP to grow its window from the mid-
point of the BDP, say 50,000, it takes about 50,000 RTTs
which amounts to 5000 seconds (1.4 hours). If a flow finishes
before that time, it severely under-utilizes the path.

To counter this under-utilization problem of TCP, many

∗A short version [27] of this paper was presented at the Inter-
national Workshop on Protocols for Fast and Long Distance
Networks in 2005.
∗For brevity, we also denote Standard TCP as TCP.

“high-speed” TCP variants are proposed (e.g., FAST [24],
HSTCP [15], STCP [25], HTCP [28], SQRT [19], West-
wood [14], and BIC-TCP [30]). Recognizing this problem
with TCP, the Linux community responded quickly to im-
plement a majority of these protocols in Linux and ship
them as part of its operating system. After a series of third-
party testing and performance validation [11, 21], in 2004,
from version 2.6.8, it selected BIC-TCP as the default TCP
algorithm and the other TCP variants as optional.

What makes BIC-TCP stand out from other TCP algor-
tihms is its stability. It uses a binary search algorithm where
the window grows to the mid-point between the last win-
dow size (i.e., max) where TCP has a packet loss and the
last window size (i.e., min) it does not have a loss for one
RTT period. This “search” into the mid-point intuitively
makes sense because the capacity of the current path must
be somewhere between the two min and max window sizes
if the network conditions do not quickly change since the
last congestion signal (which is the last packet loss). After
the window grows to the mid-point, if the network does not
have packet losses, then it means that the network can han-
dle more traffic and thus BIC-TCP sets the mid-point to
be the new min and performs another “binary-search” with
the min and max windows. This has an effect of growing
the window really fast when the current window size is far
from the available capacity of the path, and furthermore, if
it is close to the available capacity (where we had the pre-
vious loss), it slowly reduces its window increment. It has
the smallest window increment at the saturation point and
its overshoots amount beyond the saturation point where
losses occur very small. The whole window growth func-
tion is simply a logarithmic concave function. This concave
function keeps the congestion window much longer at the
saturation point or equilibrium than convex or linear func-
tions where they have the largest window increment at the
saturation point and thus have the largest overshoot at the
time packet losses occur. These features make BIC-TCP
very stable and at the same time highly scalable.

BIC-TCP trades the speed to react to changes in avail-
able bandwidth (i.e., convergence speed) for stability. If the
available capacity has increased since the last packet losses,
the window can grow beyond the max without having a loss.
At that time, BIC-TCP increases the window exponentially.
Note that an exponential function (a convex function) grows
very slowly at the beginning (slower than a linear function).
This feature adds to the stability of the protocol because



even if the protocol makes mistakes in finding the max win-
dow, it finds the next max window near the previous max
point first, thus staying at the previous saturation point
longer. But the exponential function quickly catches up and
its increment becomes very large if the losses do not occur
(in which case, the saturation point has become much larger
than the previous one). Because it stays longer near the pre-
vious saturation point than other variants, it can be slug-
gish to find the new saturation point if the saturation point
has increased far beyond the last one. BIC-TCP, however,
safely reacts fast to reduced capacity because packet losses
occur before the previous max and it reduces the window
by a multiplicative factor. This tradeoff is a design choice
of BIC-TCP. It is known [31] that available bandwidth in
the Internet change over a long time scale of several hours.
Given that packet losses would occur very asynchronously
and also proportionally to the bandwidth consumption of a
flow under a highly statistically multiplexed environment,
fast convergence is a natural consequence of the network en-
vironment – something the protocol does not have to force.
Thus, although BIC-TCP may converge slowly under low
statistical multiplexing where only a few flows are compet-
ing, its convergence speed is not an issue under typical In-
ternet environments.

CUBIC [27] is the next version of BIC-TCP. It greatly sim-
plifies the window adjustment algorithm of BIC-TCP by re-
placing the concave and convex window growth portions of
BIC-TCP by a cubic function (which contains both concave
and convex portions). In fact, any odd order polynomial
function has this shape. The choice for a cubic function is
incidental and out of convenience. The key feature of CU-
BIC is that its window growth depends only on the real time
between two consecutive congestion events. One congestion
event is the time when TCP undergoes fast recovery. We call
this real time a congestion epoch. Thus, the window growth
becomes independent of RTTs. This feature allows CUBIC
flows competing in the same bottleneck to have approxi-
mately the same window size independent of their RTTs,
achieving good RTT-fairness. Furthermore, when RTTs are
short, since the window growth rate is fixed, its growth rate
could be slower than TCP standards. Since TCP standards
(e.g., TCP-SACK) work well under short RTTs, this feature
enhances the TCP-friendliness of the protocol.

The implementation of CUBIC in Linux has gone through
several upgrades. The most notable upgrade is the efficient
implementation of cubic root calculation. Since it requires
a floating point operation, implementing it in the kernel re-
quires some integer approximation. Initially it used the bi-
section method and later changed to the Newton-Raphson
method which reduces the computational cost almost by 10
times. Another change to CUBIC after inception is the re-
moval of window clamping. Window clamping was intro-
duced in BIC-TCP where window increments are clamped
to a maximum increment and was inherited to CUBIC for
the first version. This forces the window growth to be linear
when the target mid-point is much larger than the current
window size. The authors conclude that this feature is not
needed after extensive testing due to the increased stability
of CUBIC. CUBIC replaced BIC-TCP as the default TCP
algorithm in 2006 after version 2.6.18. The changes and
upgrades of CUBIC in Linux are documented in Table 1.

The remainder of this paper is organized as follows. Section
2 gives related work, Section 3 presents the details of CU-
BIC algorithms in Linux, Section 4 includes the evolution
of CUBIC and its implementation in Linux, and Section 5
includes discussion related to fairness property of CUBIC.
Section 6 presents the results of experimental evaluation and
Section 7 gives conclusion.

2. RELATED WORK
Kelly proposed Scalable TCP (STCP) [25]. The design ob-
jective of STCP is to make the recovery time from loss events
be constant regardless of the window size. This is why it
is called “Scalable”. Note that the recovery time of TCP-
NewReno largely depends on the current window size.

HighSpeed TCP (HSTCP) [15] uses a generalized AIMD
where the linear increase factor and multiplicative decrease
factor are adjusted by a convex fucntion of the current con-
gestion window size. When the congestion window is less
than some cutoff value, HSTCP uses the same factors as
TCP. Most of high-speed TCP variants support this form
of TCP compatibility, which is based on the window size.
When the window grows beyond the cutoff point, the con-
vex function increases the increase factor and reduces the
decrease factor proportionally to the window size.

HTCP [28], like CUBIC, uses the elapsed time (∆) since
the last congestion event for calculating the current conges-
tion window size. The window growth function of HTCP
is a quadratic function of ∆. HTCP is unique in that it
adjusts the decrease factor by a function of RTTs which is
engineered to estimate the queue size in the network path
of the current flow. Thus, the decrease factor is adjusted to
be proportional to the queue size.

TCP-Vegas [10] measures the difference (δ) between expected
throughput and actual throughput based on round-trip de-
lays. When δ is less than a low threshold α, TCP-Vegas
believes the path is not congested and thus increases the
sending rate. When δ is larger than a upper threshold β,
which is a strong indication of congestion, TCP-Vegas re-
duces the sending rate. Otherwise, TCP-Vegas maintains
the current sending rate. The expected throughput is cal-
culated by dividing the current congestion window by the
minimum RTT which typically contains the delay when the
path is not congested. For each round trip time, TCP-Vegas
computes the actual throughput by dividing the number of
packets sent by the sampled RTT.

FAST [24] determines the current congestion window size
based on both round-trip delays and packet losses over a
path. FAST updates the sending rate at every other RTT
with rate-pacing. The algorithm estimates the queuing de-
lay of the path using RTTs and if the delay is well below
a threshold, it increases the window aggressively and if it
gets closer to the threshold, the algorithm slowly reduces
the increasing rate. The opposite happens when the delay
increases beyond the threshold: slowly decreases the window
first and then aggressively decreases the window. For packet
losses, FAST halves the congestion window and enters loss
recovery just like TCP.

TCP-Westwood [14] estimates an end-to-end available band-



width by accounting the rate of returning ACKs. For packet
losses, unlike TCP which “blindly” reduces the congestion
window to the half, TCP-Westwood sets the slow start thresh-
old to this estimate. This mechanism is effective especially
over wireless links where frequent channel losses are mis-
interpreted as congestion losses and thus TCP reduces the
congestion window unnecessarily.

TCP-Illinois [26] uses a queueing delay to determine an in-
crease factor α and multiplicative decrease factor β instan-
taneously during the window increment phase. Precisely,
TCP-Illinois sets a large α and small β when the average
delay d is small, which is the indication that congestion is
not imminent, and sets a small α and large β when d is large
because of imminent congestion.

TCP-Hybla [13] scales the window increment rule to ensure
fairness among the flows with different RTTs. TCP-Hybla
behaves as TCP-NewReno when the RTT of a flow is less
than a certain reference RTT (e.g., 20ms). Otherwise, TCP-
Hybla increases the congestion window size more aggres-
sively to compensate throughput drop due to RTT increase.

TCP-Veno [17] determines the congestion window size very
similar to TCP-NewReno, but it uses the delay information
of TCP-Vegas to differentiate non-congestion losses. When
packet loss happens, if the queue size inferred by the delay
increase is within a certain threshold, which is the strong
indication of random loss, TCP-Veno reduces the congestion
window by 20%, not by 50%.

3. CUBIC CONGESTION CONTROL
3.1 BIC-TCP
In this section, we give some details on BIC-TCP which is a
predecessor of CUBIC. The main feature of BIC-TCP is its
unique window growth function as discussed in the introduc-
tion. Figure 1 shows the growth function of BIC-TCP. When
it gets a packet loss event, BIC-TCP reduces its window by
a multiplicative factor β. The window size just before the
reduction is set to the maximum Wmax and the window size
just after the reduction is set to the minimum Wmin. Then,
BIC-TCP performs a binary search using these two param-
eters - by jumping to the “midpoint” between Wmax and
Wmin. Since packet losses have occurred at Wmax, the win-
dow size that the network can currently handle without loss
must be somewhere between these two numbers.

However, jumping to the midpoint could be too much in-
crease within one RTT, so if the distance between the mid-
point and the current minimum is larger than a fixed con-
stant, called Smax, BIC-TCP increments cwnd by Smax (lin-
ear increase). If BIC-TCP does not get packet losses at the
updated window size, that window size becomes the new
minimum. This process continues until the window incre-
ment is less than some small constant called Smin at which
point, the window is set to the current maximum. So the
growth function after a window reduction will be most likely
to be a linear one followed by a logarithmic one (marked as
“additive increase” and “binary search” respectively in Fig-
ure 1 (a).)

If the window grows past the maximum, the equilibrium
window size must be larger than the current maximum and a

(a) BIC-TCP window growth function.

(b) CUBIC window growth function.

Figure 1: Window growth functions of BIC-TCP
and CUBIC.

new maximum must be found. BIC-TCP enters a new phase
called “max probing”. Max probing uses a window growth
function exactly symmetric to those used in additive increase
and binary search (which is logarithmic; its reciprocal will
be exponential) and then additive increase. Figure 1 (a)
shows the growth function during max probing. During max
probing, the window grows slowly initially to find the new
maximum nearby, and after some time of slow growth, if it
does not find the new maximum (i.e., packet losses), then
it guesses the new maximum is further away so it switches
to a faster increase by switching to additive increase where
the window size is incremented by a large fixed increment.
The good performance of BIC-TCP comes from the slow
increase around Wmax and linear increase during additive
increase and max probing.

3.2 CUBIC window growth function
BIC-TCP achieves good scalability in high speed networks,
fairness among competing flows of its own and stability with
low window oscillations. However, BIC-TCP’s growth func-
tion can still be too aggressive for TCP, especially under
short RTT or low speed networks. Furthermore, the several
different phases (binary search increase, max probing, Smax

and Smin) of window control add complexity in implement-
ing the protocol and analyzing its performance. We have
been searching for a new window growth function that while
retaining strengths of BIC-TCP (especially, its stability and
scalability), simplifies the window control and enhances its
TCP friendliness.

We introduce a new high-speed TCP variant: CUBIC. As
the name of the protocol represents, the window growth
function of CUBIC is a cubic function whose shape is very
similar to the growth function of BIC-TCP. CUBIC uses a
cubic function of the elapsed time from the last congestion
event. While most alternative algorithms to Standard TCP
uses a convex increase function where after a loss event, the



window increment is always increasing, CUBIC uses both
the concave and convex profiles of a cubic function for win-
dow increase. Figure 1 (b) shows the growth function of
CUBIC.

The details of CUBIC are as follows. After a window re-
duction following a loss event, it registers Wmax to be the
window size where the loss event occurred and performs a
multiplicative decrease of congestion window by a factor of
β where β is a window decrease constant and the regular fast
recovery and retransmit of TCP. After it enters into conges-
tion avoidance from fast recovery, it starts to increase the
window using the concave profile of the cubic function. The
cubic function is set to have its plateau at Wmax so the con-
cave growth continues until the window size becomes Wmax.
After that, the cubic function turns into a convex profile and
the convex window growth begins. This style of window ad-
justment (concave and then convex) improves protocol and
network stability while maintaining high network utiliza-
tion [12]. This is because the window size remains almost
constant, forming a plateau around Wmax where network
utilization is deemed highest and under steady state, most
window size samples of CUBIC are close to Wmax, thus pro-
moting high network utilization and protocol stability. Note
that protocols with convex growth functions tend to have
the largest window increment around the saturation point,
introducing a large burst of packet losses.

The window growth function of CUBIC uses the following
function:

W (t) = C(t−K)3 + Wmax (1)

where C is a CUBIC parameter, t is the elapsed time from
the last window reduction, and K is the time period that the
above function takes to increase W to Wmax when there is
no further loss event and is calculated by using the following
equation:

K =
3

r

Wmaxβ

C
(2)

Upon receiving an ACK during congestion avoidance, CU-
BIC computes the window growth rate during the next RTT
period using Eq. (1). It sets W (t + RTT ) as the candidate
target value of congestion window. Suppose that the cur-
rent window size is cwnd. Depending on the value of cwnd,
CUBIC runs in three different modes. First, if cwnd is less
than the window size that (standard) TCP would reach at
time t after the last loss event, then CUBIC is in the TCP

mode (we describe below how to determine this window size
of standard TCP in term of time t). Otherwise, if cwnd

is less than Wmax, then CUBIC is in the concave region,
and if cwnd is larger than Wmax, CUBIC is in the convex
region. Algorithm 1 shows the pseudo-code of the window
adjustment algorithm of CUBIC implemented in Linux.

3.3 TCP-friendly region
When receiving an ACK in congestion avoidance, we first
check whether the protocol is in the TCP region or not. This
is done as follows. We can analyze the window size of TCP
in terms of the elapsed time t. Using a simple analysis in
[16], we can find the average window size of additive increase
and multiplicative decrease (AIMD) with an additive factor

Algorithm 1: Linux CUBIC algorithm (v2.2)

Initialization:
tcp friendliness←− 1, β ←− 0.2
fast convergence←− 1, C ←− 0.4
cubic reset()

On each ACK:
begin

if dMin then dMin←− min(dMin, RTT )
else dMin←− RTT

if cwnd ≤ ssthresh then cwnd←− cwnd + 1
else

cnt←− cubic update()
if cwnd cnt > cnt then

cwnd←− cwnd + 1, cwnd cnt←− 0

else cwnd cnt←− cwnd cnt + 1

end
Packet loss:
begin

epoch start←− 0
if cwnd < Wlast maxand fast convergence then

Wlast max ←− cwnd ∗ (2−β)
2

........................... (3.7)

else Wlast max ←− cwnd

ssthresh←− cwnd←− cwnd∗ (1−β) ................. (3.6)

end
Timeout:
begin

cubic reset()

end
cubic update(): .......................................................... (3.2)
begin

ack cnt←− ack cnt + 1
if epoch start ≤ 0 then

epoch start←− tcp time stamp

if cwnd < Wlast max then

K ←− 3

q

Wlast max−cwnd

C

origin point←−Wlast max

else
K ←− 0
origin point←− cwnd

ack cnt←− 1
Wtcp ←− cwnd

t←− tcp time stamp + dMin− epoch start

target←− origin point + C(t−K)3

if target > cwnd then cnt←− cwnd
target−cwnd

.. (3.4,3.5)
else cnt←− 100 ∗ cwnd

if tcp friendliness then cubic tcp friendliness()

end
cubic tcp friendliness(): .......................................... (3.3)
begin

Wtcp ←−Wtcp + 3β

2−β
∗ ack cnt

cwnd

ack cnt←− 0
if Wtcp > cwnd then

max cnt←− cwnd
Wtcp−cwnd

if cnt > max cnt then cnt←− max cnt

end
cubic reset():
begin

Wlast max ←− 0, epoch start←− 0, origin point←− 0
dMin←− 0, Wtcp ←− 0, K ←− 0, ack cnt←− 0

end



α and a multiplicative factor β to be the following function:

1

RTT

s

α

2

2− β

β

1

p
(3)

By the same analysis, the average window size of TCP with

α = 1 and β = 0.5 is 1
RTT

q

3
2

1
p
. Thus, for Eq. 3 to be

the same as that of TCP, α must be equal to 3β

2−β
. If TCP

increases its window by α per RTT, we can get the window
size of TCP in terms of the elapsed time t as follows:

Wtcp(t) = Wmax(1− β) + 3
β

2− β

t

RTT
(4)

If cwnd is less than Wtcp(t), then the protocol is in the TCP
mode and cwnd is set to Wtcp(t) at each reception of ACK.
The cubic tcp friendliness() in Algorithm 1 describes
this behavior.

3.4 Concave region
When receiving an ACK in congestion avoidance, if the pro-
tocol is not in the TCP mode and cwnd is less than Wmax,
then the protocol is in the concave region. In this region,

cwnd is incremented by W (t+RTT )−cwnd

cwnd
, which is shown at

(3.4) in Algorithm 1.

3.5 Convex region
When the window size of CUBIC is larger than Wmax, it
passes the plateau of the cubic function after which CU-
BIC follows the convex profile of the cubic function. Since
cwnd is larger than the previous saturation point Wmax,
this indicates that the network conditions might have been
perturbed since the last loss event, possibly implying more
available bandwidth after some flow departures. Since the
Internet is highly asynchronous, fluctuations in available
bandwidth always exist. The convex profile ensures that the
window increases very slowly at the beginning and gradu-
ally increases its growth rate. We also call this phase as the
maximum probing phase since CUBIC is searching for a new
Wmax. As we do not modify the window increase function
only for the convex region, the window growth function for
both regions remains unchanged. To be exact, if the pro-
tocol is the convex region outside the TCP mode, cwnd is

incremented by W (t+RTT )−cwnd

cwnd
, which is shown at (3.5) in

Algorithm 1.

3.6 Multiplicative decrease
When a packet loss occurs, CUBIC reduces its window size
by a factor of β. We set β to 0.2. A side effect of setting β to
a smaller value than 0.5 is slower convergence. We believe
that while a more adaptive setting of β could result in faster
convergence, it will make the analysis of the protocol much
harder and also affects the stability of the protocol. This
adaptive adjustment of β is a future research issue.

3.7 Fast Convergence
To improve the convergence speed of CUBIC, we add a
heuristic in the protocol. When a new flow joins the net-
work, existing flows in the network need to give up their
bandwidth shares to allow the new flow some room for growth.
To increase this release of bandwidth by existing flows, we
add the following mechanism called fast convergence.

With fast convergence, when a loss event occurs, before a
window reduction of the congestion window, the protocol
remembers the last value of Wmax before it updates Wmax

for the current loss event. Let us call the last value of Wmax

to be Wlast max. At a loss event, if the current value of
Wmax is less than the last value of it, Wlast max, this in-
dicates that the saturation point experienced by this flow
is getting reduced because of the change in available band-
width. Then we allow this flow to release more bandwidth
by reducing Wmax further. This action effectively lengthens
the time for this flow to increase its window because the re-
duced Wmax forces the flow to have the plateau earlier. This
allows more time for the new flow to catch up its window
size. The pseudo code for this operation is shown at (3.7)
in Algorithm 1.

4. CUBIC IN LINUX KERNEL
Since the first release of CUBIC to the Linux community
in 2006, CUBIC has gone through several upgrades. This
section documents those changes.

4.1 Evolution of CUBIC in Linux
Table 1 summarizes important updates [1] on the implemen-
tation of CUBIC in Linux since its first introduction in Linux
2.6.13. The most updates on CUBIC are focussed on per-
formance and implementation efficiency improvements. One
of notable optimizations is the improvement on cubic root
calculation. The implementation of CUBIC requires solving
Eq. 2, a cubic root calculation. The initial implementation
of CUBIC [18] in Linux uses the bisection method. But
the Linux developer community worked together to replace
it with the Newton-Rhaphson method which improves the
running time by more than 10 times on average (1032 clocks
vs. 79 clocks) and reduces the variance in running times.
CUBIC also went through several algorithmic changes to
have its current form to enhance its scalability, fairness and
convergence speed.

4.2 Pluggable Congestion Module
More inclusions of TCP variants to the Linux kernel has
substantially increased the complexity of the TCP code in
the kernel. Even though a new TCP algorithm comes with a
patch for the kernel, this process requires frequent kernel re-
compilations and exacerbates the stability of the TCP code.
To eliminate the need of kernel recompilation and help ex-
perimenting with a new TCP algorithm with Linux, Stephen
Hemminger introduces a new architecture [23, 6], called
pluggable congestion module, in Linux 2.6.13. It is dynami-
cally loadable and allows switching between different conges-
tion control algorithm modules on the fly without recompi-
lation. Figure 2 shows the interface to this module, named
tcp congestion ops. Each method in tcp congestion ops is
a hook in the TCP code that provides access to the TCP
code. A new congestion control algorithm requires to define
cong avoid and ssthresh, but the other methods are optional.

The init and release functions are called for the initializa-
tion and termination of a given TCP algorithm. ssthresh is
the slow start threshold which is called when the given TCP
detects a loss. The lower bound on congestion window is
the slow start threshold, but when congestion control needs
to override this lower bound, min cwnd can be used for that



struct tcp_congestion_ops {
..
void (*init)(struct sock *sk);
void (*release)(struct sock *sk);
u32 (*ssthresh)(struct sock *sk);
u32 (*min_cwnd)(const struct sock *sk);
void (*cong_avoid)(struct sock *sk, u32 ack,

u32 in_flight);
void (*set_state)(struct sock *sk, u8 new_state);
void (*cwnd_event)(struct sock *sk,

enum tcp_ca_event ev);
u32 (*undo_cwnd)(struct sock *sk);
void (*pkts_acked)(struct sock *sk, u32 num_acked,

s32 rtt_us);
void (*get_info)(struct sock *sk, u32 ext,

struct sk_buff *skb);
char name[TCP_CA_NAME_MAX];

..
};

Figure 2: tcp congestion ops structure

purpose. cong avoid is called whenever an ACK arrives and
the congestion window (cwnd) is adjusted. For instance, in
standard TCP New-Reno, when an ACK arrives, cong avoid

increments cwnd by one if the current cwnd is less than
ssthresh (during slow start). Otherwise, cong avoid incre-
ments cwnd by 1

cwnd
(during congestion avoidance). set state

is called when the congestion control state of TCP is changed
among Normal, Loss Recovery, Loss Recovery after Time-
out, Reordering, and Congestion Window Reduction. cwnd event

is called when the events defined in tcp ca event occur. When
an algorithm requires to handle one of the events, it can
create a hook to cwnd event which is called when the cor-
responding event occurs. undo cwnd handles false detection
of loss or timeout. When TCP realizes the change to cwnd

is wrong, it falls back to the original cwnd using undo cwnd.
pkts acked is a hook for counting ACKs; many protocols
(e.g., BIC-TCP, CUBIC, and H-TCP) also use this hook
to get RTT information. get info is a hook for providing
congestion control information to the user space.

CUBIC has been implemented as one of pluggable conges-
tion control modules. The followings are the hooks that
CUBIC use for its implementation [3].

1. bictcp init: initializes private variables used for CU-
BIC algorithm. If initial ssthresh is not 0, then set
ssthresh to this value. If initial ssthresh is properly set
by users when there is no history information about
the end-to-end path, it can improve the start-up be-
havior of CUBIC significantly.

2. bictcp recalc ssthresh: If the fast convergence mode
is turned on and the current cwnd is smaller than
last max, set last max to cwnd ∗ (1 − β

2
). Otherwise,

set last max to cwnd ∗ (1− β). ssthresh is always set
to cwnd ∗ (1− β) because TCP needs to back off for
congestion.

3. bictcp cong avoid: increases cwnd by computing the
difference between the current cwnd value and its ex-
pected value of the next RTT round which is obtained
by cubic root calculation.

4. bictcp set state: resets all the variables when a timeout
happens.

5. bictcp undo cwnd: returns the maximum between the
current cwnd value and the last max (which is the con-
gestion window before the drop).

6. bictcp acked: maintains the minimum delay observed
so far. The minimum delay is reset when a timeout
happens.

5. DISCUSSION
With a deterministic loss model where the number of packets
between two successive loss events is always 1

p
, CUBIC al-

ways operates with the concave window profile which greatly
simplifies the performance analysis of CUBIC. The average
window size of CUBIC can be obtained by the following
function:

E{Wcubic} = 4

s

C(4− β)

4β
(
RTT

p
)3 (5)

To ensure fairness to Standard TCP based on our argument
in the introduction, we set C to 0.4. We find that this
value of C allows the size of the TCP friendly region to be
large enough to encompass most of the environments where
Standard TCP performs well while preserving the scalability
of the window growth function. With β set to 0.2, the above
formula is reduced to the following function:

E{Wcubic} = 1.17 4

r

(
RTT

p
)3 (6)

(6) is used to argue the fairness of CUBIC to Standard TCP
and its safety for deployment below.

5.1 Fairness to standard TCP
In environments where standard TCP is able to make rea-
sonable use of the available bandwidth, CUBIC does not
significantly change this state.

Standard TCP performs well in the following two types of
networks:

1. networks with a small bandwidth-delay product (BDP).
2. networks with a short RTT, but not necessarily a small
BDP.

CUBIC is designed to behave very similarly to standard
TCP in the above two types of networks. Figure 3 shows the
response function (average window size) of standard TCP,
HSTCP, and CUBIC. The average window size of standard
TCP and HSTCP is from [15]. The average window size of
CUBIC is calculated by using (6) and CUBIC TCP-friendly
equation in (4). Figure 3 shows that CUBIC is more friendly
to TCP than HSTCP, especially in networks with a short
RTT where TCP performs reasonably well. For example,
in a network with RTT = 10ms and p = 10−6, TCP has
an average window of 1200 packets. If the packet size is
1500 bytes, then TCP can achieve an average rate of 1.44
Gbps. In this case, CUBIC achieves exactly the same rate
as Standard TCP, whereas HSTCP is about ten times more
aggressive than Standard TCP.
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Figure 3: Response function of standard TCP,
HSTCP, and CUBIC in networks with 10ms (a) and
100ms (b) RTTs respectively.

5.2 CUBIC in action
Figure 4 shows the window curve of CUBIC over the running
time. This graph is obtained by running testbed experiment
on a dumbbell network configuration with significant back-
ground traffic in both directions. The bottleneck capacity is
400Mbps and the RTT is set to 240ms. Drop tail routers are
used. There are two CUBIC flows, and they have the same
RTT and bottleneck. Note that the curves have plateaus
around Wmax which is the window size at the time of the
last packet loss event. We observe that two flows use all
phases of CUBIC functions over the running time and two
flows converges to a fair share within 200 seconds.

Figure 5 shows the friendliness of CUBIC with respect to
TCP-SACK. In this experiment, we run one CUBIC flow
with one TCP-SACK flow over a short-RTT network path
(8ms) and a long-RTT network path (82ms), respectively.
Under the short-RTT (8ms) network where even TCP-SACK
can use the full bandwidth of the path, CUBIC operates in
the TCP-friendly mode. Figure 5 (a) confirms that one CU-
BIC flow runs in the TCP-friendly mode and shares the
bandwidth fair with the other TCP-SACK flow by main-
taining the congestion window of CUBIC similar with that
of TCP-SACK. Under the long-RTT (82ms) network where
Standard TCP has the under-utilization problem, CUBIC
uses a cubic function to be scalable for this environment.
Figure 5 (b) confirms that the CUBIC flow runs a cubic win-
dow growth function unlike the case with the short-RTT net-
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Figure 4: Two CUBIC flows with 246ms RTT.

work where CUBIC is indistinguishable with TCP-SACK.

Figure 6 shows the experiment with four TCP-SACK flows
and four CUBIC flows. For this experiment, we set the
bandwidth to 400Mbps, RTT to 40ms, and buffer size to
100% BDP of a flow. We observe that four flows of CUBIC
converge to a fair share nicely within a short period of time.
Their cwnd curves are very smooth and do not cause much
disturbance to competing TCP flows. In this experiment,
the total network utilization is around 95%: the four CUBIC
flows take about 72% of the total bandwidth, the four TCP
flows take 23%.

6. EXPERIMENTAL EVALUATION
6.1 Experimental Setup
We construct a dumbbell topology shown in Figure 7 where
two dummynet routers are located at the bottleneck between
two end points. Each end points consists of a set of Dell
Linux servers dedicated to high-speed TCP variant flows and
background traffic. Background traffic is generated by us-
ing a modification of a web-traffic generator, called Surge [9]
and Iperf [2]. We modified Surge to generate a wider range
of flow sizes in order to increase variability in cross traffic
because medium size flows tend to fully execute the slow
start and increase the variability in available bandwidth.
The RTT of each background traffic is randomly selected
from an exponential distribution found in [7]. The socket
buffer size of background traffic machines is fixed to de-
fault 64KB while high-speed TCP machines are configured
to have a very large buffer so that the transmission rates
of high-speed flows are only limited by the congestion con-
trol algorithm. Two dummynet routers and four high-speed
TCP machines are tuned to generate or forward traffic close
to 1Gbps. The details of system tuning for both Linux and
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Figure 5: One CUBIC flow and one TCP-SACK
flow. Bandwidth is set to 400Mbps.
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Figure 6: Four TCP-SACK flows and four CUBIC
flows over 40ms RTT

FreeBSD systems are shown in [5]. Note that Netem [22] in
Linux provides the same functionality with the dummynet
software in FreeBSD. For this experiment, the maximum
bandwidth of the bottleneck router is set to 400Mbps. The
bottleneck buffer size is set to 100% BDP if it is not explic-
itly specified. The amount of background traffic comparable
to around 15% of the bottleneck bandwidth is pushed into
forward and backward directions of the dumbbell. We use
the drop-tail router at the bottleneck.

6.2 Intra-Protocol Fairness
We measure the intra-protocol fairness between two flows
of a protocol with the same RTT. We use a throughput
ratio between these two flows for representing the intra-
protocol fairness. This metric represents a degree of band-
width shares between two flows of the same protocol. For
this experiment, we vary RTTs between 16ms and 324ms
and test CUBIC, BIC-TCP, HSTCP, and TCP-SACK pro-

Figure 7: Testbed

tocols. Figure 8 (a) and 8 (b) show the intra-protocol fair-
ness and link utilization for the tested protocols. CUBIC
and BIC-TCP show higher fairness index than TCP-SACK
and HSTCP, representing better fair sharing between the
flows. With 16ms RTT, TCP-SACK shows the best fairness
index indicating that Standard TCP works fairly well un-
der small RTT networks. CUBIC, BIC-TCP, and HSTCP
utilize the link regardless of RTTs while TCP-SACK suffers
under-utilization with larger RTTs.

6.3 Inter-RTT Fairness
We measure the fairness in sharing the bottleneck band-
width between two competing flows that have different RTTs.
For this experiment, we fix RTT of one flow to 162ms and
vary RTT of the other flow between 16ms and 164ms. This
setting gives us the RTT ratio up to 10. We test CU-
BIC, BIC-TCP, HSTCP, and TCP-SACK protocols. Fig-
ure 9 (a) shows that TCP-SACK achieves RTT fairness lin-
early proportional to the inverse of the RTT ratio, which
means that the short RTT flow has proportionally more
bandwidth shares than the longer RTT flow. Even though
there is no commonly accepted notion of RTT-fairness, we
think the proportional fairness of TCP-SACK is desirable
because long RTT flows tend to use more resources along
the longer path than short RTT flows. But some of high-
speed protocols are desiged to provide an equal bandwidth
sharing among the flows with different RTTs (e.g., H-TCP
and FAST). Based on this notion of RTT fairness, if the
RTT fairness of a protocol has a similar slope with TCP-
SACK, we can say the protocol is “acceptable”. Figure 9
(a) confirms that CUBIC has a similar slope with TCP-
SACK but with a higher fairness ratio indicating better
share of resources (bandwidth) while HSTCP fails in achiev-
ing a similar slope. Even though BIC-TCP shows the simi-
lar slope with TCP-SACK, it shows the lowest fairness ra-
tios among tested protocols. This is what CUBIC improves
over BIC-TCP for RTT-fairness. We also observe that even
though two HSTCP flows fully utilize the link regardless of
their RTT ratio (See Figure 9 (b)), the slow convergence of
HSTCP flows hinders even two flows of the same RTT from
reaching to a fair share within a reasonable amount of time.

6.4 Impact on standard TCP traffic
As many new high-speed TCP protocols modify the win-
dow growth function of TCP in a more scalable fashion,
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Figure 8: Intra-protocol fairness (a) and link uti-
lization (b). The bottleneck bandwidth is set to
400Mbps and 2Mbyte bottleneck buffer is used.
RTT is varied between 16ms and 324ms and two
flows have the same RTT.

these new protocols tend to affect the performance of Stan-
dard TCP flows which share the same bottleneck link along
the path. As being fair to Standard TCP is critical to the
safety of the protocol, we need to make sure that the window
growth function of a new protocol does not unfairly affect
the Standard TCP flows.

In this experiment, we measure how much these high-speed
protocols steal the bandwidth from competing TCP-SACK
flows. By following the scenarios shown in the recent eval-
uation proposal [8], we first measure the throughput shares
of four TCP-SACK flows when they are competing with
the other four TCP-SACK flows. After that, we replace
four flows with a new protocol. We measure the share of
TCP-SACK flows and the other four TCP variant flows at
each run and report only the accumulated average of their
bandwidth shares. We test CUBIC, BIC-TCP, HSTCP, and
TCP-SACK.

Figure 10 (a) shows the relationship between RTT and the
throughput share between a new protocol flows and TCP-
SACK flows. We fix the bottleneck bandwidth to 400Mbps
and vary RTT between 10ms and 160ms. Clearly, TCP-
SACK flows do not fully utilize the bottleneck bandwidth
as RTT increases due to its slow window growth function.
With 400Mbps and 160ms RTT, 8 TCP-SACK flows achieve
around 80% of the link bandwidth, but the underutilization
will be very serious for larger BDP path and with small num-
ber of flows. CUBIC, BIC-TCP, and HSTCP fully utilize the
link, thanks to their scalable window growth functions. All
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Figure 9: Inter-RTT fairness. The bottleneck band-
width is set to 400Mbps and 2Mbyte buffer is used.
One flow has a fixed RTT of 162ms and the other
flow varies its RTT from 16ms to 162ms.

the tested high-speed protocols grab more bandwidth share
from TCP-SACK as RTT increases. Also we confirm that
CUBIC gives more room to TCP-SACK than BIC-TCP and
HSTCP for whole range of tested RTTs while achieving full
utilization of the path. This is one of the design objective of
CUBIC that it operates like BIC-TCP and be nice to other
flows in the network. As RTT increases, CUBIC, BIC-TCP
and HSTCP steal more bandwidth from TCP-SACK. Some
amount of bandwidth they steal is from the amount of band-
width that TCP-SACK doesn’t utilize.

Figure 10 (b) and 10 (c) show the performance results re-
garding the TCP friendliness over short-RTT networks (10ms
RTT) and long-RTT networks (100ms RTT), respectively.
According to [15], under high loss rate regions (small-RTT
networks) where TCP is well-behaving, the protocol must
behave like TCP, and under low loss rate regions (large-
RTT networks) where TCP has a low utilization problem,
it can use more bandwidth than TCP. As shown in Fig-
ure 10 (b), with 10ms RTT, we can see that TCP-SACK
still uses the full bandwidth. In this region, all high-speed
protocols need to be friendly to TCP-SACK by following the
arguments above. Interestingly, CUBIC behaves more TCP-
friendly even comparing to TCP-SACK for certain band-
widths. Rather than stealing the bandwidth from TCP-
SACK flows, CUBIC flows employs a window growth func-
tion that is comparable to TCP-SACK, so that competing
TCP-SACK flows have the same chance with CUBIC flows
for grabbing the bandwidth shares. However, BIC-TCP and
HSTCP show a tendency to operate in a scalable mode
(being more aggressive) as the link speed increases. Even



though the graph doesn’t show the results corresponding to
the link speed beyond 400Mbps, it is obvious that a scalable
mode of BIC-TCP and HSTCP will deprive most of band-
width share of TCP-SACK. As most high-speed TCP pro-
tocols including BIC-TCP and HSTCP achieve TCP friend-
liness by having some form of “TCP modes” during which
they behave in the same way as TCP. BIC-TCP and HSTCP
enter their TCP mode when the window size is less than
14 and 38 packets, respectively. Therefore, even with 1ms
RTT, if BDP is larger than 38 packets, HSTCP will operate
in a scalable mode. This is the limitation when the protocol
uses a fixed cutoff for detecting a TCP-friendly region. CU-
BIC defines a TCP-friendly region in real-time; therefore,
CUBIC doesn’t have this scalability problem.

Figure 10 (c) shows the results with 100ms RTT. All four
protocols show reasonable friendliness to TCP. As the band-
width gets larger than 10Mbps, the throughput ratio drops
quite rapidly. As CUBIC, like BIC-TCP and HSTCP, re-
gards this operating region is out of TCP-friendly region
and behaves to be scalable to this environment. CUBIC
and BIC-TCP show a similar aggressiveness which is slightly
more aggressive† than HSTCP especially for the bandwidth
less than 100Mbps. Through an extensive testing [4], we
confirm that this doesn’t highly impact on the performance
of TCP-SACK.

7. CONCLUSION
We propose a new TCP variant, called CUBIC, for fast
and long distance networks. CUBIC is an enhanced ver-
sion of BIC-TCP. It simplifies the BIC-TCP window control
and improves its TCP-friendliness and RTT-fairness. CU-
BIC uses a cubic increase function in terms of the elapsed
time since the last loss event. In order to provide fairness
to Standard TCP, CUBIC also behaves like Standard TCP
when the cubic window growth function is slower than Stan-
dard TCP. Furthermore, the real-time nature of the pro-
tocol keeps the window growth rate independent of RTT,
which keeps the protocol TCP friendly under both short
and long RTT paths. We show the details of Linux CUBIC
algorithm and implementation. Through extensive testing,
we confirm that CUBIC tackles the shortcomings of BIC-
TCP and achieves fairly good Intra-protocol fairness, RTT-
fairness and TCP-friendliness.
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Version Kernel Updates
2.0-pre 2.6.13 The authors releases the first CUBIC

implementation in Linux to the Linux
community [18].

2.0 2.6.15 CUBIC is officially included in the
Linux kernel.

2.6.18 CUBIC replaces BIC-TCP as the de-
fault TCP protocol in Linux kernel.

2.6.19 The original implementation of CUBIC
has a scaling bug. It has taken about
a month to fix this bug since CUBIC
replaced BIC-TCP.

2.6.21 Its original implementation by the au-
thors are optimized by the Linux de-
veloper for better performance [20, 29].
In particular, the cubic root calculation
in CUBIC, originally implemented in
the bisection method, is now replaced
by a Newton-Raphson method with ta-
ble loopups for small values. This re-
sults in more than 10 times perfor-
mance improvement in the cubic root
calculation. On average, the bisection
method costs 1032 clocks while the im-
proved version costs only 79 clocks.

2.1 2.6.22 The original implementation of CU-
BIC clamped the maximum window in-
crement to 32 packets per RTT. This
feature is inherited from BIC-TCP
(Smax). An extensive lab testing con-
firmed that CUBIC can safely remove
this window clamping in the concave
region. This enhances the scalability of
CUBIC over very large BDP network
paths. This is incorporated in CUBIC
2.1 (Linux 2.6.22).

2.6.22-rc4 CUBIC improves slow start for fast
start-up by removing initial ssthresh.

2.6.23 The use of received timestamp op-
tion value from RTT calculation is
removed for preventing possible ma-
licious receiver attacks that reports
wrong timestamps to reduce RTTs for
more throughput.

2.2 2.6.25-rc3 The window clamping during the con-
vex growth phase is also removed. This
feature allows CUBIC to improve its
convergence speed while maintaining
its fairness and TCP friendliness.

Table 1: CUBIC version history


