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Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison
is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).

ABSTRACT

We present a system for accurate real-time mapping of complex and
arbitrary indoor scenes in variable lighting conditions, using only a
moving low-cost depth camera and commodity graphics hardware.
We fuse all of the depth data streamed from a Kinect sensor into
a single global implicit surface model of the observed scene in
real-time. The current sensor pose is simultaneously obtained by
tracking the live depth frame relative to the global model using a
coarse-to-fine iterative closest point (ICP) algorithm, which uses
all of the observed depth data available. We demonstrate the advan-
tages of tracking against the growing full surface model compared
with frame-to-frame tracking, obtaining tracking and mapping re-
sults in constant time within room sized scenes with limited drift
and high accuracy. We also show both qualitative and quantitative
results relating to various aspects of our tracking and mapping sys-
tem. Modelling of natural scenes, in real-time with only commod-
ity sensor and GPU hardware, promises an exciting step forward
in augmented reality (AR), in particular, it allows dense surfaces to
be reconstructed in real-time, with a level of detail and robustness
beyond any solution yet presented using passive computer vision.
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1 INTRODUCTION

Real-time infrastructure-free tracking of a handheld camera whilst
simultaneously mapping the physical scene in high-detail promises
new possibilities for augmented and mixed reality applications.

In computer vision, research on structure from motion (SFM)
and multi-view stereo (MVS) has produced many compelling re-
sults, in particular accurate camera tracking and sparse reconstruc-
tions (e.g. [10]), and increasingly reconstruction of dense surfaces
(e.g. [24]). However, much of this work was not motivated by real-
time applications.

Research on simultaneous localisation and mapping (SLAM) has
focused more on real-time markerless tracking and live scene re-
construction based on the input of a single commodity sensor—a
monocular RGB camera. Such ‘monocular SLAM’ systems such as
MonoSLAM [8] and the more accurate Parallel Tracking and Map-
ping (PTAM) system [17] allow researchers to investigate flexible
infrastructure- and marker-free AR applications. But while these
systems perform real-time mapping, they were optimised for ef-
ficient camera tracking, with the sparse point cloud models they
produce enabling only rudimentary scene reconstruction.

In the past year, systems have begun to emerge that combine
PTAM’s handheld camera tracking capability with dense surface
MVS-style reconstruction modules, enabling more sophisticated
occlusion prediction and surface interaction [19, 26]. Most recently
in this line of research, iterative image alignment against dense re-
constructions has also been used to replace point features for cam-
era tracking [20]. While this work is very promising for AR, dense
scene reconstruction in real-time remains a challenge for passive
monocular systems which assume the availability of the right type
of camera motion and suitable scene illumination.

But while algorithms for estimating camera pose and extract-
ing geometry from images have been evolving at pace, so have
the camera technologies themselves. New depth cameras based ei-
ther on time-of-flight (ToF) or structured light sensing offer dense
measurements of depth in an integrated device. With the arrival
of Microsoft’s Kinect, such sensing has suddenly reached wide
consumer-level accessibility. The opportunities for SLAM and AR



Figure 2: A larger scale reconstruction obtained in real-time.

with such sensors are obvious, but algorithms to date have not fully
leveraged the fidelity and speed of sensing that such devices offer.

In this paper we present a detailed method with analysis of what
we believe is the first system which permits real-time, dense volu-
metric reconstruction of complex room-sized scenes using a hand-
held Kinect depth sensor. Users can simply pick up and move a
Kinect device to generate a continuously updating, smooth, fully
fused 3D surface reconstruction. Using only depth data, the system
continuously tracks the 6 degrees-of-freedom (6DOF) pose of the
sensor using all of the live data available from the Kinect sensor
rather than an abstracted feature subset, and integrates depth mea-
surements into a global dense volumetric model. A key novelty
is that tracking, performed at 30Hz frame-rate, is always relative
to the fully up-to-date fused dense model, and we demonstrate the
advantages this offers. By using only depth data, our system can
work in complete darkness mitigating any issues concerning low
light conditions, problematic for passive camera [17, 19, 26] and
RGB-D based systems [14]. Examples of live reconstructions gen-
erated from our system are shown throughout the paper ranging in
scale including Figures 1 and 2.

The use of highly parallel general purpose GPU (GPGPU) tech-
niques is at the core of all of our design decisions, allowing both
tracking and mapping to perform at the frame-rate of the Kinect
sensor (and even at higher rates) and in constant time. Qualitative
and quantitative results in this paper demonstrate various aspects of
the tracking and mapping system performance.

We believe that the resulting system will become an enabler for
many AR and interaction scenarios. In particular, the high quality,
real time, reconstruction and tracking will enable a fuller physically
predictive interaction between the virtual and the real scene, as well
as providing the high quality occlusion handling required for com-
plex mixed reality geometry.

2 BACKGROUND

2.1 The Kinect Sensor
Kinect is a new and widely-available commodity sensor platform
that incorporates a structured light based depth sensor. Using an
on-board ASIC a 11-bit 640x480 depth map is generated at 30Hz.

While the quality of this depth map is generally remarkable given
the cost of the device, a number of challenges remain. In particular,
the depth images contain numerous ‘holes’ where no structured-
light depth reading was possible. This can be due to certain ma-
terials or scene structures which do not reflect infra-red (IR) light,
very thin structures or surfaces at glancing incidence angles. When
moved fast the device will also experience motion blur (like any
camera) and this can also lead to missing data.

Our system takes the real-time stream of noisy depth maps from
Kinect and performs real-time dense SLAM, producing a consistent
3D scene model incrementally while simultaneously tracking the
sensor’s agile motion using all of the depth data in each frame. In
the following sections we review important related work on SLAM,
dense tracking, surface representations and previous work on joint
tracking and modelling with active depth sensors.

2.2 Drift-Free SLAM for AR
Most SLAM algorithms must be capable of producing self-
consistent scene maps and performing drift-free sensor tracking in
a sequential, real-time fashion. Early SFM algorithms capable of
dealing with a large number of images had either tracked camera
motion incrementally, accumulating drift [2], or required off-line
optimisation [10] to close loops. The first ‘monocular SLAM’ sys-
tem capable of producing a globally consistent maps in real-time
with a handheld camera was based on probabilistic filtering of a
joint state consisting of camera and scene feature position estimates
[8]. This system was targeted at small-scale workspaces compatible
with some AR applications, but was in fact limited to these due the
high computational cost of filtering a large state vector containing
the many features that would be needed to map larger areas. Even
in small spaces, this issue meant that the tracking accuracy which
could practically be achieved in real-time was relatively poor due
to the sparse feature maps built.

Later, it was discovered to be practically advantageous to aban-
don the propagation of a full probabilistic state and instead to run
two procedures in alternation or in parallel: tracking, estimating the
pose of the sensor on the assumption that the current scene model
is perfectly accurate; and mapping, improving and expanding the
map using a form of global optimisation. This approach was pi-
oneered by the PTAM system [17] which demonstrated quality
real-time SLAM with a monocular camera in small workspaces.
PTAM’s mapping component is nothing but bundle adjustment, the
classical least-squares solution to camera and feature optimisation,
but implemented judiciously over an automatically selected set of
spatially-distributed keyframes and running repeatedly as often as
computing resources will allow. PTAM’s highly engineered live
tracking component runs in parallel at frame-rate, and performs fea-
ture matching and robust n-point pose estimation. Compared to fil-
ters, this architecture means that an order of magnitude more scene
features could be packed into the map [25], and the result was real-
time accuracy now comparable to results in off-line reconstruction.

But PTAM’s principle of splitting tracking and mapping can be
taken much further, since it allows a flexible choice of the com-
ponents used for each of those processes. PTAM, as a feature-
based system, achieves excellent accuracy for camera tracking in
previously unknown scenes, but the sparse point map it generates is
still not useful for much beyond providing localisation landmarks.
A number of recent approaches have concentrated on this point,
and have demonstrated live reconstruction of dense geometry using
multi-view stereo techniques while relying on sparse models for
estimating the sensor motion. [19], using a monocular camera and
dense variational optical flow matching between selected frames,
were able to reconstruct a patchwork of depth maps to form a dense
scene model live; but relied on camera pose estimates coming from
PTAM. [26] presented another system with many of the same ideas
but further demonstrated near-real-time depth map creation.

2.3 Dense Tracking and Mapping by Scan Alignment
Alongside mapping and tracking work using passive cameras, a line
of research has continued using active laser and depth imaging sen-
sors in the fields of robotics and graphics. These methods have had
at their core the alignment of multiple scans by minimising distance
measures between all of the data in each rather than feature extrac-
tion and matching.



Some of the first useful algorithms for obtaining both full 6DOF
scan alignment (robot pose) and surface reconstruction (environ-
ment mapping) were developed in the graphics domain for the de-
tailed reconstruction of individual objects. The most important
class of algorithms have been based on the ICP concept introduced
in [3] which poses data alignment as a nonlinear optimisation prob-
lem in which correspondences between scans are approximated us-
ing the closest pairs of points found between scans at the previ-
ous iteration. Distance metrics have been investigated including the
point-plane metric [5] which was shown to improve convergence
rates and is the preferred algorithm when surface normal measure-
ments are available. The process of obtaining the closest point cor-
respondences is expensive; a drastic speed up introduced by the
projective data association algorithm [4] is available for depth data
obtained in projective image form where measurements are given
as a function of pixel location. A number of ICP variants perform
early iterations on a subset of possibly corresponding points or op-
erate within a coarse-to-fine scheme [31], speeding up both the data
association and final pose optimisation.

Some SLAM algorithms have also made use of depth data align-
ment and ICP (often referred to in robotics as scan matching), orig-
inally in 2D using laser range-finder sensors, to produce effective
robot localisation algorithms which can also autonomously map de-
tailed space occupancy in large areas [12]. ICP is used to estimate
relative robot motion between consecutive poses, which together
with loop closure detection and correction can produce large scale
metrically consistent maps.

2.4 Dense Scene Representations

Dense depth measurements from active sensors, once aligned, can
be used to produce fused representations of space which are bet-
ter than simply overlapping scans. Occupancy mapping has been
popular in robotics, and represents space using a grid of cells,
within each of which a probability of occupancy is accumulated
via Bayesian updates every time a new range scan provides an in-
formative observation [9]. Such non-parametric environment mod-
els provide vital free space information together with arbitrary
genus surface representation with orientation information, impor-
tant when physical interaction predictions are required (as is the
case in robotics and augmented reality).

A related non-parametric representation used in graphics is the
signed distance function (SDF) introduced in [7] for the purpose
of fusing partial depth scans while mitigating problems related to
mesh-based reconstruction algorithms. The SDF represents surface
interfaces as zeros, free space as positive values that increase with
distance from the nearest surface, and (possibly) occupied space
with a similarly negative value. It has been shown in [15], that
Bayesian probabilistic inference of the optimal surface reconstruc-
tion, under a simple Gaussian noise model on the depth measure-
ments with a surface visibility predicate that every surface point is
visible from all sensor viewpoints, results in a simple algorithm of
averaging weighted signed distance function into the global frame.
In practice the result is only locally true due to surface occlusions
and truncation of the SDF as detailed in [7] is required to avoid sur-
faces interfering. For higher fidelity reconstructions, at the cost of
extra computation, when depth maps are contaminated with heavy-
tailed noise or outliers, the more recent work of [30] uses the more
robust L1 norm on the truncated SDF data term together with a
total variation regularisation to obtain globally optimal surface re-
constructions.

An advantage of the SDF over basic probabilistic occupancy
grids is that the surface interface is readily extractable as the zero
crossings of the function in contrast to seeking the modes of a prob-
ability distribution in the occupancy grid. This was noted in [7]
and has an important consequence in our work where we utilise
the full currently reconstructed surface model to obtain a prediction

for use in live sensor pose estimation. Given a SDF representation
two main approaches to obtaining a view (rendering) of the sur-
face exist, and have been extensively studied within the graphics
community. One option is to extract the connected surfaces using a
marching cubes type algorithm [18], followed by a standard raster-
ising rendering pipeline. Alternatively the surface can be directly
raycast, avoiding the need to visit areas of the function that are out-
side the desired view frustum. This is attractive due to the scene
complexity-independent nature of the algorithm [21], a factor that
is becoming increasingly important as the requirement for real-time
photo-realistic rendering increases [1].

2.5 Dense SLAM with Active Depth Sensing

Rusinkiewicz et al. [23] combined a real-time frame-to-frame ICP
implementation using the point-plane metric and projective data as-
sociation together with a point based occupancy averaging and splat
rendering of the aligned scans to demonstrate the first live recon-
struction results of small models. In their system a user manoeuvres
an object by hand and sees a continuously-updated model as the ob-
ject is scanned. The system was able to fuse depth images from the
range finder for rendering purposes at rates up to 10Hz. The re-
strictive non mobile range sensor prototype and lack of global pose
optimisation to reduce drift prevented them from using the system
for reconstructing larger scenes. The final models were optimised
off-line using [7]. They conclude that with substantial increases in
computational power, it might be possible to instead perform live
volumetric SDF fusion. More notably, they suggest the possibility
of using such an accumulated global reconstruction for resolving
ambiguities that occur with frame-to-frame ICP. With the advent
of GPU hardware and our efficient implementation thereon we are
able to achieve both these goals in our system.

The introduction of commercially available depth cameras has
inspired other related real-time 3D reconstruction. For example,
the work of Weise et al. [28] produces high quality scans using a
fixed ToF sensor and moving object, whereas Cui et al. [6] demon-
strate a moving handheld ToF object scanner. These systems are
motivated by small scale high quality scanning of objects. Whilst
our system supports such reconstructions, the main focus of our
work is on reconstruction of larger scale scenes from higher speed
camera motions.

More recently, SLAM work has focused on large scale recon-
struction (mapping) including an impressive recent 3D version of
the occupancy mapping approach, relying on 3D laser range-finder
data and using octrees to enable scaling to large volumes is the
Octomap algorithm [29]. RGB-D approaches that combine depth
representations are also beginning to appear with the advent of the
affordable Microsoft Kinect RGB-D sensor. [14] estimated the live
3D motion of the sensor (1 – 2Hz update) by obtaining relative
frame alignment via ICP alignment between depth scans initialised
by RGB feature matching. Global consistency was achieved us-
ing a pose graph optimisation by using loop closures detected us-
ing RGB feature correspondences. This system, while impressive,
was targeted at large scale building mapping; the tracking front end
was not designed to provide real-time performance needed for use-
ful augmented reality; and the dense modelling (based on a surface
patch representation) provides a less refined reconstruction than can
be achieved by using a full global fusion approach.

3 METHOD

We now describe the components that make up our system. Figure 3
provides an overview of our whole method in block form. It is
comprised of the following four components:

Surface measurement: A pre-processing stage, where a dense
vertex map and normal map pyramid are generated from the raw
depth measurements obtained from the Kinect device.
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Figure 3: Overall system workflow.

Surface reconstruction update: The global scene fusion pro-
cess, where given the pose determined by tracking the depth data
from a new sensor frame, the surface measurement is integrated into
the scene model maintained with a volumetric, truncated signed dis-
tance function (TSDF) representation.

Surface prediction: Unlike frame-to-frame pose estimation as
performed in [15], we close the loop between mapping and local-
isation by tracking the live depth frame against the globally fused
model. This is performed by raycasting the signed distance func-
tion into the estimated frame to provide a dense surface prediction
against which the live depth map is aligned.

Sensor pose estimation: Live sensor tracking is achieved using
a multi-scale ICP alignment between the predicted surface and cur-
rent sensor measurement. Our GPU based implementation uses all
the available data at frame-rate.

3.1 Preliminaries
We represent the live 6DOF camera pose estimated for a frame at
time k by a rigid body transformation matrix:

Tg,k =

[
Rg,k tg,k
0> 1

]
∈ SE3 , (1)

where the Euclidean group SE3 := {R, t | R ∈ SO3, t ∈ R3}. This
maps the camera coordinate frame at time k into the global frame
g, such that a point pk ∈ R3 in the camera frame is transferred into
the global co-ordinate frame via pg = Tg,kpk.

We will also use a single constant camera calibration matrix
K that transforms points on the sensor plane into image pixels.
The function q = π(p) performs perspective projection of p ∈
R3 = (x,y,z)> including dehomogenisation to obtain q ∈ R2 =

(x/z,y/z)>. We will also use a dot notation to denote homogeneous
vectors u̇ := (u>|1)>

3.2 Surface Measurement
At time k a measurement comprises a raw depth map Rk which
provides calibrated depth measurements Rk(u) ∈ R at each image
pixel u = (u,v)> in the image domain u ∈U ⊂ R2 such that pk =
Rk(u)K−1u̇ is a metric point measurement in the sensor frame of
reference k. We apply a bilateral filter [27] to the raw depth map to
obtain a discontinuity preserved depth map with reduced noise Dk,

Dk(u) =
1

Wp
∑

q∈U
Nσs (‖u−q‖2)Nσr (‖Rk(u)−Rk(q)‖2)Rk(q) ,

(2)
where Nσ (t) = exp(−t2σ−2) and Wp is a normalizing constant.

We back-project the filtered depth values into the sensor’s frame
of reference to obtain a vertex map Vk,

Vk(u) = Dk(u)K−1u̇ . (3)

Since each frame from the depth sensor is a surface measurement
on a regular grid, we compute, using a cross product between neigh-

Figure 4: A slice through the truncated signed distance volume
showing the truncated function F > µ (white), the smooth distance
field around the surface interface F = 0 and voxels that have not yet
had a valid measurement(grey) as detailed in eqn. 9.

bouring map vertices, the corresponding normal vectors,

Nk(u) = ν
[
(Vk(u+1,v)−Vk(u,v))× (Vk(u,v+1)−Vk(u,v))

]
,

(4)
where ν [x] = x/‖x‖2.

We also define a vertex validity mask: Mk(u) 7→ 1 for each pixel
where a depth measurement transforms to a valid vertex; otherwise
if a depth measurement is missing Mk(u) 7→ 0. The bilateral filtered
version of the depth map greatly increases the quality of the normal
maps produced, improving the data association required in tracking
described in Section 3.5.

We compute an L = 3 level multi-scale representation of the sur-
face measurement in the form of a vertex and normal map pyramid.
First a depth map pyramid Dl∈[1...L] is computed. Setting the bottom
depth map pyramid level equal to the original bilateral filtered depth
map, the sub-sampled version Dl+1 is computed from Dl by block
averaging followed by sub-sampling to half the resolution. Depth
values are used in the average only if they are within 3σr of the
central pixel to ensure smoothing does not occur over depth bound-
aries. Subsequently each level in a vertex and normal map pyramid
Vl∈[1...L], Nl∈[1...L] is computed with Equations 3 and 4 using the
corresponding depth map level. We note that given the camera to
global co-ordinate frame transform Tg,k associated with the surface
measurement, the global frame vertex is Vg

k(u) = Tg,kV̇k(u) and
the equivalent mapping of normal vectors into the global frame is
Ng

k(u) = Rg,kNk(u).

3.3 Mapping as Surface Reconstruction
Each consecutive depth frame, with an associated live camera pose
estimate, is fused incrementally into one single 3D reconstruction
using the volumetric truncated signed distance function (TSDF)
[7]. In a true signed distance function, the value corresponds to
the signed distance to the closest zero crossing (the surface inter-
face), taking on positive and increasing values moving from the
visible surface into free space, and negative and decreasing values
on the non-visible side. The result of averaging the SDF’s of multi-
ple 3D point clouds (or surface measurements) that are aligned into
a global frame is a global surface fusion.

An example given in Figure 4 demonstrates how the TSDF al-
lows us to represent arbitrary genus surfaces as zero crossings
within the volume. We will denote the global TSDF that contains a
fusion of the registered depth measurements from frames 1 . . .k as
Sk(p) where p ∈ R3 is a global frame point in the 3D volume to be
reconstructed. A discretization of the TSDF with a specified res-
olution is stored in global GPU memory where all processing will
reside. From here on we assume a fixed bijective mapping between
voxel/memory elements and the continuous TSDF representation
and will refer only to the continuous TSDF S. Two components are



stored at each location of the TSDF: the current truncated signed
distance value Fk(p) and a weight Wk(p),

Sk(p) 7→ [Fk(p),Wk(p)] . (5)

A dense surface measurement (such as the raw depth map Rk) pro-
vides two important constraints on the surface being reconstructed.
First, assuming we can truncate the uncertainty of a depth mea-
surement such that the true value lies within ±µ of the measured
value, then for a distance r from the camera center along each depth
map ray, r < (λRk(u)− µ) is a measurement of free space (here
λ = ‖K−1u̇‖2 scales the measurement along the pixel ray). Sec-
ond, we assume that no surface information is obtained in the re-
construction volume at r > (λRk(u) + µ) along the camera ray.
Therefore the SDF need only represent the region of uncertainty
where the surface measurement exists |r−λRk(u)| ≤ µ . A TSDF
allows the asymmetry between free space, uncertain measurement
and unknown areas to be represented. Points that are within visible
space at distance greater than µ from the nearest surface interface
are truncated to a maximum distance µ . Non-visible points farther
than µ from the surface are not measured. Otherwise the SDF rep-
resents the distance to the nearest surface point.

Although efficient algorithms exist for computing the true dis-
crete SDF for a given set of point measurements (complexity is
linear in the the number of voxels) [22], sophisticated implemen-
tations are required to achieve top performance on GPU hardware,
without which real-time computation is not possible for a reason-
able size volume. Instead, we use a projective truncated signed
distance function that is readily computed and trivially parallelis-
able. For a raw depth map Rk with a known pose Tg,k, its global
frame projective TSDF [FRk ,WRk ] at a point p in the global frame
g is computed as,

FRk (p) = Ψ

(
λ
−1‖(tg,k−p‖2−Rk(x)

)
, (6)

λ = ‖K−1ẋ‖2 , (7)

x =
⌊

π

(
KT−1

g,kp
)⌋

, (8)

Ψ(η) =

{
min

(
1, η

µ

)
sgn(η) iff η ≥−µ

null otherwise
(9)

We use a nearest neighbour lookup b.c instead of interpolating
the depth value, to prevent smearing of measurements at depth dis-
continuities. 1/λ converts the ray distance to p to a depth (we found
no considerable difference in using SDF values computed using dis-
tances along the ray or along the optical axis). Ψ performs the SDF
truncation. The truncation function is scaled to ensure that a sur-
face measurement (zero crossing in the SDF) is represented by at
least one non truncated voxel value in the discretised volume ei-
ther side of the surface. Also, the support is increased linearly with
distance from the sensor center to support correct representation
of noisier measurements. The associated weight WRk (p) is propor-
tional to cos(θ)/Rk(x), where θ is the angle between the associated
pixel ray direction and the surface normal measurement in the local
frame.

The projective TSDF measurement is only correct exactly at the
surface FRk (p) = 0 or if there is only a single point measurement
in isolation. When a surface is present the closest point along a
ray could be another surface point not on the ray associated with
the pixel in Equation 8. It has been shown that for points close
to the surface, a correction can be applied by scaling the SDF by
cos(θ) [11]. However, we have found that approximation within
the truncation region for 100s or more fused TSDFs from multiple
viewpoints (as performed here) converges towards an SDF with a
pseudo-Euclidean metric that does not hinder mapping and tracking
performance.

The global fusion of all depth maps in the volume is formed by
the weighted average of all individual TSDFs computed for each
depth map, which can be seen as de-noising the global TSDF from
multiple noisy TSDF measurements. Under an L2 norm the de-
noised (fused) surface results as the zero-crossings of the point-wise
SDF F minimising:

min
F∈F ∑

k
‖WRk FRk −F)‖2. (10)

Given that the focus of our work is on real-time sensor tracking and
surface reconstruction we must maintain interactive frame-rates.
(For a 640x480 depth stream at 30fps the equivalent of over 9
million new point measurements are made per second). Storing
a weight Wk(p) with each value allows an important aspect of the
global minimum of the convex L2 de-noising metric to be exploited
for real-time fusion; that the solution can be obtained incrementally
as more data terms are added using a simple weighted running av-
erage [7], defined point-wise {p|FRk (p) 6= null}:

Fk(p) =
Wk−1(p)Fk−1(p)+WRk (p)FRk (p)

Wk−1(p)+WRk (p)
(11)

Wk(p) = Wk−1(p)+WRk (p) (12)

No update on the global TSDF is performed for values resulting
from unmeasurable regions specified in Equation 9. While Wk(p)
provides weighting of the TSDF proportional to the uncertainty of
surface measurement, we have also found that in practice simply
letting WRk (p) = 1, resulting in a simple average, provides good re-
sults. Moreover, by truncating the updated weight over some value
Wη ,

Wk(p)←min(Wk−1(p)+WRk (p),Wη ) , (13)

a moving average surface reconstruction can be obtained enabling
reconstruction in scenes with dynamic object motion.

Although a large number of voxels can be visited that will not
project into the current image, the simplicity of the kernel means
operation time is memory, not computation, bound and with current
GPU hardware over 65 gigavoxels/second (≈ 2ms per full volume
update for a 5123 voxel reconstruction) can be updated. We use 16
bits per component in S(p), although experimentally we have ver-
ified that as few as 6 bits are required for the SDF value. Finally,
we note that the raw depth measurements are used for TSDF fusion
rather than the bilateral filtered version used in the tracking com-
ponent, described later in section 3.5. The early filtering removes
desired high frequency structure and noise alike which would re-
duce the ability to reconstruct finer scale structures.

3.4 Surface Prediction from Ray Casting the TSDF
With the most up-to-date reconstruction available comes the abil-
ity to compute a dense surface prediction by rendering the surface
encoded in the zero level set Fk = 0 into a virtual camera with the
current estimate Tg,k. The surface prediction is stored as a vertex
and normal map V̂k and N̂k in frame of reference k and is used in
the subsequent camera pose estimation step.

As we have a dense surface reconstruction in the form of a global
SDF, a per pixel raycast can be performed [21]. Each pixel’s cor-
responding ray, Tg,kK−1u̇, is marched starting from the minimum
depth for the pixel and stopping when a zero crossing (+ve to
−ve for a visible surface) is found indicating the surface interface.
Marching also stops if a −ve to +ve back face is found, or ulti-
mately when exiting the working volume, both resulting in non sur-
face measurement at the pixel u.

For points on or very close to the surface interface Fk(p) = 0 it
is assumed that the gradient of the TSDF at p is orthogonal to the
zero level set, and so the surface normal for the associated pixel u



Figure 5: Reconstructed of a scene showing raycasting of the TSDF
(left) without and (middle and right) with interpolation of the TSDF at
the surface interface using eqn. 15.

Figure 6: Demonstration of the space skipping ray casting. (Left)
pixel iteration count are shown where for each pixel the ray is tra-
versed in steps of at most one voxel (white equals 480 increments
and black 60). (middle) ray marching steps are drastically reduced
by skipping empty space according to the minimum truncation µ

(white equals 70 iterations and black 10 ≈ 6× speedup). Marching
steps can be seen to increase around the surface interface where
the signed distance function has not been truncated. (Right) Normal
map at resulting surface intersection.

along which p was found can be computed directly from Fk using a
numerical derivative of the SDF:

Rg,kN̂k = N̂g
k(u) = ν

[
∇F(p)

]
, ∇F =

[
∂F
∂x

,
∂F
∂y

,
∂F
∂ z

]>
(14)

Further, this derivative is scaled in each dimension to ensure cor-
rect isotropy given potentially arbitrary voxel resolutions and re-
construction dimensions.

Since the rendering of the surface is restricted to provide phys-
ically plausible measurement predictions, there is a minimum and
maximum rendering range the ray needs to traverse corresponding
to conservative minimum and maximum sensor range (≈ [0.4,8]
meters for the Kinect). This results in the desirable property of
the proposed surface prediction requiring a bounded time per pixel
computation for any size or complexity of scene with a fixed volu-
metric resolution.

Classically a min/max block acceleration structure [21] can be
used to speed up marching through empty space. However, due
to continual updating of the TSDF (which would require a con-
stant update to the min/max macro blocks) we found that simple
ray skipping provides a more useful acceleration. In ray skipping
we utilise the fact that near F(p) = 0 the fused volume holds a good
approximation to the true signed distance from p to the nearest sur-
face interface. Using our known truncation distance we can march
along the ray in steps with size < µ while values of F(p) have +ve
truncated values, as we can assume a step µ must pass through at
least one non-truncated +ve value before stepping over the surface
zero crossing. The speed-up obtained is demonstrated in Figure 6
by measuring the number of steps required for each pixel to inter-
sect the surface relative to standard marching.

Higher quality intersections can be obtained by solving a ray/tri-
linear cell intersection [21] that requires solving a cubic polyno-
mial. As this is expensive we use a simple approximation. Given
a ray has been found to intersect the SDF where F+

t and F+
t+∆t are

trilinearly interpolated SDF values either side of the zero crossing
at points along the ray t and t+∆t from its starting point, we find

parameter t∗ at which the intersection occurs more precisely:

t∗ = t− ∆tF+
t

F+
t+∆t −F+

t
. (15)

The predicted vertex and normal maps are computed at the inter-
polated location in the global frame. Figure 5 shows a typical recon-
struction, the interpolation scheme described achieves high quality
occlusion boundaries at a fraction of the cost of full interpolation.

3.5 Sensor Pose Estimation
Live camera localisation involves estimating the current camera
pose Tw,k ∈ SE3 (Equation 1) for each new depth image. Many
tracking algorithms use feature selection to improve speed by re-
ducing the number of points for which data association need be
performed. In this work, we take advantage of two factors to al-
low us instead to make use of all of the data in a depth image for
a dense iterated close point based pose estimation. First, by main-
taining a high tracking frame-rate, we can assume small motion
from one frame to the next. This allows us to use the fast projec-
tive data association algorithm [4] to obtain correspondence and the
point-plane metric [5] for pose optimisation. Second, modern GPU
hardware enables a fully parrallelised processing pipeline, so that
the data association and point-plane optimisation can use all of the
available surface measurements.

The point-plane error metric in combination with correspon-
dences obtained using projective data association was first demon-
strated in a real time modelling system by [23] where frame-to-
frame tracking was used (with a fixed camera) for depth map align-
ment. In our system we instead track the current sensor frame by
aligning a live surface measurement (Vk,Nk) against the model pre-
diction from the previous frame (V̂k−1, N̂k−1). We note that frame-
to-frame tracking is obtained simply by setting (V̂k−1, N̂k−1) ←
(Vk−1,Nk−1) which is used in our experimental section for a com-
parison between frame-to-frame and frame-model tracking.

Utilising the surface prediction, the global point-plane energy,
under the L2 norm for the desired camera pose estimate Tg,k is:

E(Tg,k) = ∑
u∈U

Ωk(u)6=null

∥∥∥∥(Tg,kV̇k(u)− V̂g
k−1 (û)

)>
N̂g

k−1 (û)
∥∥∥∥

2
, (16)

where each global frame surface prediction is obtained using the
previous fixed pose estimate Tg,k−1. The projective data as-
sociation algorithm produces the set of vertex correspondences
{Vk(u), V̂k−1(û)|Ω(u) 6= null} by computing the perspectively pro-
jected point, û = π(KT̃k−1,kV̇k(u)) using an estimate for the frame-
frame transform T̃z

k−1,k = T−1
g,k−1T̃

z
g,k and testing the predicted and

measured vertex and normal for compatibility. A threshold on the
distance of vertices and difference in normal values suffices to re-
ject grossly incorrect correspondences, also illustrated in Figure 7:

Ω(u) 6= null iff


Mk(u) = 1, and

‖T̃z
g,kV̇k(u)− V̂g

k−1 (û)‖2 ≤ εd , and
〈R̃z

g,kNk(u), N̂
g
k−1 (û)〉 ≤ εθ .

(17)

where εd and εθ are threshold parameters of our system. T̃z=0
g,k is

initialised with the previous frame pose Tg,k.
An iterative solution, T̃z

g,k for z > 0 is obtained by minimising
the energy of a linearised version of (16) around the previous es-
timate T̃z−1

g,k . Using the small angle assumption for an incremental
transform:

T̃z
inc =

[
R̃z∣∣ t̃z

]
=

 1 α −γ tx
−α 1 β ty
γ −β 1 tz

 , (18)



Figure 7: Example of point-plane outliers as person steps into par-
tially reconstructed scene (left). Outliers from compatibility checks
(Equation 17) using a surface measurement with (center) and with-
out (right) bilateral filtering applied to the raw depth map. Ω(u) = null
are light grey with unpredicted/unmeasured points shown in white.

an updated transform is simply T̃z
g,k = T̃z

incT̃
z−1
g,k . Writing the update

T̃z
inc as a parameter vector,

x = (β ,γ,α, tx, ty, tz)> ∈ R6 (19)

and updating the current global frame vertex estimates for all pixels
{u|Ω(u) 6= null}, Ṽg

k(u) = T̃z−1
g,k V̇k(u), we minimise the linearised

error function using the incremental point transfer:

T̃z
g,kV̇k(u) = R̃zṼg

k(u)+ t̃z = G(u)x+ Ṽg
k(u) , (20)

where the 3×6 matrix G is formed with the skew-symmetric matrix
form of Ṽg

k(u):

G(u) =
[[

Ṽg
k(u)

]
×

∣∣ I3×3

]
. (21)

An iteration is obtained by solving:

min
x∈R6 ∑

Ωk(u)6=null
‖E‖2

2 (22)

E = N̂g
k−1(û)

>
(

G(u)x+ Ṽg
k(u)− V̂g

k−1(û)
)

(23)

By computing the derivative of the objective function with respect
to the parameter vector x and setting to zero, a 6× 6 symmetric
linear system is generated for each vertex-normal element corre-
spondence:

∑
Ωk(u)6=null

(
A>A

)
x = ∑A>b, (24)

A> = G>(u)N̂g
k−1(û), (25)

b = N̂g
k−1(û)

>
(

V̂g
k−1(û)− Ṽg

k(u)
)
.(26)

In our GPU implementation each summand of the normal sys-
tem is computed in parallel. The symmetry of the system enables
operations and memory to be saved and the final sum is obtained
using a parallel tree-based reduction [13], to obtain the upper tri-
angular component of the symmetric system. The solution vector
x is efficiently computed using a Cholesky decomposition on the
host (CPU) and coerced back into an SE3 transform which we com-
pose onto the previous pose estimate, obtaining T̃z

g,k. The data as-
sociation and pose minimisation is embedded into a coarse to fine
framework using the bottom 3 levels of a vertex and normal map
pyramid. We iterate for a maximum of zmax = [4,5,10] iterations in
levels [3,2,1] respectively, starting with the coarsest level 3. After
all iterations are completed we fix the final camera pose Tg,k← T̃

zmax
g,k

Stability and validity check for transformation update Ide-
ally we would only like to perform a surface update if we are sure

that tracking has not failed or is highly erroneous. As inter-frame
sensor motion increases the assumptions made in both linearisation
of the point-plane error metric and the projective data association
can be broken. Also, if the currently observable surface geometry
does not provide point-plane pairs that constrain the full 6DOF of
the linear system then an arbitrary solution within the remaining
free DOFs can be obtained. Both outcomes will lead to a reduced
quality reconstruction and tracking failure. We therefore perform
a check on the null space of the normal system to ensure it is ade-
quately constrained. We also perform a simple threshold check on
the magnitude of incremental transform parameters x, to ensure the
small angle assumption was not drastically broken. If either test
fails, the system is placed into re-localisation mode.

Relocalisation Our current implementation uses an interactive
re-localisation scheme, whereby if the sensor loses track, the last
known sensor pose is used to provide a surface prediction, and the
user instructed to align the incoming depth frame with what is dis-
played. While running the pose optimisation, if the stability and
validity checks are passed tracking and mapping are resumed.

4 EXPERIMENTS

We have conducted a number of experiments to investigate the per-
formance of our system. These and other aspects, such as the sys-
tem’s ability to keep track during very rapid motion, are illustrated
extensively in our submitted video.

4.1 Metrically Consistent Reconstruction
Our tracking and mapping system provides a constant time algo-
rithm for a given area of reconstruction, and we are interested in
investigating its ability to form metrically consistent models from
trajectories containing local loop closures without requiring explicit
global joint-estimation. We are also interested in the ability of the
system to scale gracefully with different processing and memory
resources.

To investigate these properties we conducted the following ex-
periment. The Kinect sensor was placed in a fixed location observ-
ing a tabletop scene mounted on a turntable. The turntable was
then spun through a full rotation as depth data was captured over
≈ 19 seconds, resulting in N = 560 frames. For the purposes of
our system, if the reconstruction volume is set to span solely the
region of the rotating scene, the resulting depth image sequence ob-
tained is obviously equivalent to the Kinect having been moved on
a precise circular track around a static table, and this allows us to
easily evaluate the quality of tracking. All parameters of the system
are kept constant using a reconstruction resolution of 2563 voxels
unless stated otherwise.

The N frames of depth data captured were then processed in each
of the following ways:

1. Frames 1 . . .N were fused together within the TSDF using
sensor pose estimates obtained with our frame-to-frame only
ICP implementation.

2. Frames 1 . . .L, L < N were fed through our standard tracking
and mapping pipeline forming an incomplete loop closure.
Here, sensor pose estimates are obtained by the full frame-
model ICP method.

3. Frames 1 . . .N were fed through our standard tracking and
mapping pipeline resulting in a complete loop closure around
the table. Again, sensor pose estimates are obtained by frame-
model ICP.

4. Frames 1 . . .N were fed not just once but repeatedly for M = 4
loops to the standard tracking and mapping pipeline. This was
possible because the sensor motion was such that frame 1 and
frame N were captured from almost the same place.



(a) Frame to frame tracking (b) Partial loop (c) Full loop (d) M times duplicated loop

Figure 8: Circular motion experiment to highlight the SLAM characteristics of our system as the sensor orbits a table. For each column, the top
row shows a wide view showing the estimated sensor trajectory (every 4th of N frames is shown), and the bottom row a closer view highlighting
reconstruction quality with normal mapping. (a) Frame-to-frame tracking, where the pose of each new frame is estimated by registration against
just the last frame. Rapid accumulation of errors results in the non-circular trajectory and poor reconstruction is apparent (though see later
Figure 11 where frame-skipping is shown to improve this). (b),(c),(d) show our full frame-to-model tracking approach. In (b) processing is halted
with the loop two-thirds complete. (c) shows loop closure, where the last frame processed is a duplication of the first frame and should have
an identical ground truth location. We highlight these two frames, and they are seen almost overlapping (red and black) alongside excellent
trajectory and scene reconstruction quality. Some small artefacts in the reconstruction induced by loop closure can be seen (the diagonal slash
across the books in the bottom-right). In (d) we have taken the same data from (c) and fed it repeatedly (M = 4 times) to the algorithm to
investigate the convergence properties of our system. We now see even better alignment between the loop closing frames, and reconstruction
artefacts reduced. Note that this can be compared with the reconstruction from the same number of MN different frames of the same scene
obtained from hand-held sensor motion in Figure 9.

5. Finally, for comparison, a new longer dataset of MN frames
was processed, where a user moved the sensor over the scene
without precise repetition.

Our main motivation in performing experiments (2 . . .4) is to in-
vestigate the convergence properties of the tracking and mapping
scheme, as no explicit joint optimisation is performed. The result-
ing sensor trajectories and reconstructions are given and explained
in Figure 8. In all experiments, we display with increased size the
sensor pose estimate for frame 1 — but also in experiment 3, where
only a single loop is performed, we continue tracking through frame
N and render a comparison sensor pose for the 1st frame of the next
loop. As shown in the close-up view in Figure 10, this allows us
to inspect the drift that has occurred as loops proceed. The ground
truth poses for both of these poses are equal.

While the turntable experiments demonstrate interesting conver-
gence of the system without an explicit global optimisation, the real
power in integrating every frame of data is the ability to rapidly
assimilate as many measurements of the surfaces as are possible,
(experiment 5). Figure 9 shows the surface reconstruction where
NM = 560× 4 different frames were acquired from a free moving
Kinect sensor. While the same algorithmic parameters were used,
including reconstruction volume, the increased view points result
in a reconstruction quality superior to the turntable sequence.

A natural extension to a scan matching (frame-to-frame) ICP
based SLAM system is to drop keyframes and perform tracking
relative to the keyframe. Using such anchor scans reduces drift.
This is clearly demonstrated in Figure 11 where we sub-sample the
N frames to use every 8th frame only. While the drift is drasti-
cally reduced in comparison to Figure 8(a) the frame-model track-
ing approach presents a drift free result. Our frame-model match-
ing approach mitigates a number of hard problems that arise in a

Figure 9: Agile sensor motion based reconstruction of the same
scene, with the same reconstruction volume but MN different images.
Here we see better reconstruction quality due to each depth map of-
fering independent data and a greater range of viewpoints.

fully fledged keyframing system including deciding where to drop
keyframes, and how to detect which keyframe(s) to track from.

An important aspect of a useful system is its ability to scale with
available GPU memory and processing resources. Figure 12 shows
the reconstruction result where the the N frames are sub-sampled in
time to use every 6th frame, and 64 times less GPU memory is used
by reducing the reconstruction resolution to 643.



(a) M=1 (b) M=2 (c) M=4

Figure 10: Close up view of loop closing frames in circular experiment
as the data from a single loop is repeatedly fed to our system. We
see (a) initially good alignment after one pass improving through (b)
two passes to finally (c) the frames are extremely closely registered
after four passes.

(a) Frame to frame tracking (b) Frame to model tracking

Figure 11: (a) Frame to frame vs. (b) frame to model tracking, both
using every 8t h frame. There is a drastic reduction in drift compared
to Figure 8(a) where all frames are used. But the frame-model track-
ing results in drift-free operation without explicit global optimisation.

4.2 Processing Time
Figure 13 shows results from an experiment where timings were
taken of the main system components and the reconstruction voxel
resolution was increased in steps. We note the constant time opera-
tion of tracking and mapping for a given voxel resolution.

4.3 Observations and Failure Modes
Our system is robust to a wide range of practical conditions in terms
of scene structure and camera motion. Most evidently, by using
only depth data it is completely robust to indoor lighting scenar-
ios. Our video demonstrates a good variety of agile motion tracking
successfully through even rapid motion. The main failure case in
standard indoor scenes is when the sensor is faced by a large planar
scene which fills most of its field of view. A planar scene leaves
three of the sensor’s 6DOF motion unconstrained in the linear sys-
tems null space, resulting in tracking drifting or failure.

5 GEOMETRY AWARE AR
The dense accurate models obtained in real-time open up many new
possibilities for augmented reality, human-computer-interaction,
robotics and beyond. For example, the ability to reason about
changes in the scene, utilising outliers from ICP data association
(see Figure 7), allows for new object segmentation methods; these
segmented objects can be tracked independently using other in-
stances of ICP allowing piece-wise rigid tracking techniques; and
physics can be simulated in real-time on acquired models directly

Figure 12: A reconstruction result using 1
64 the memory (643 vox-

els) of the previous figures, and using only every 6th sensor frame,
demonstrating graceful degradation with drastic reductions in mem-
ory and processing resources.

Ti
m

e
 (

m
s)

Voxel Resolution
64 128 192 320 448384256 512

33 3 3 3 3 3 3

Figure 13: Real-time cumulative timing results of system compo-
nents, evaluated over a range of resolutions (from 643 to 5123 vox-
els) as the sensor reconstructs inside a volume of 3m3. Timings
are shown (from bottom to top of the plot) for: pre-processing raw
data, multi-scale data-associations; multi-scale pose optimisations;
raycasting the surface prediction and finally surface measurement
integration.

from the TSDF volumetric representation (see Figure 14). For AR,
the dense model also provides an ability to handle truer occlusion
boundaries between real and virtual for rendering. In [16] we dis-
cuss all these possibilities in detail.

Figure 14: Thousands of particles interact live with surfaces as they
are reconstructed. Notice how fine-grained occlusions are handled
between the real and virtual. Simulation works on the TSDF volu-
metric representation, and runs on the GPU alongside tracking and
mapping, all in real-time.

6 CONCLUSIONS

The availability of commodity depth sensors such as Kinect has the
potential to revolutionise the fields of robotics and human-computer
interaction. In this work we have taken a step towards bringing
the ability to reconstruct and interact with a 3D environment to the
masses. The key concepts in our real-time tracking and mapping
system are (1) always up-to-date surface representation fusing all
registered data from previous scans using the truncated signed dis-
tance function; (2) accurate and robust tracking of the camera pose



by aligning all depth points with the complete scene model; and (3)
fully parallel algorithms for both tracking and mapping, taking full
advantage of commodity GPGPU processing hardware. Most im-
portantly, each of the components has a trivially parallelisable struc-
ture and scales naturally with processing and memory resources.

There are several ways in which the system could be extended.
The current system works well for mapping medium sized room
with volumes of ≤ 7m3. However, the reconstruction of large-
scale models such as the interior of a whole building would raise
a number of additional challenges. Firstly, the current dense vol-
umetric representation would require too much memory and more
importantly, very large exploratory sequences would lead to recon-
structions with inevitable drift which would be apparent in the form
of misalignments upon trajectory loop closures. These are classic
problems in SLAM with good solutions for sparse representations,
but will require new thinking for dense modelling. A clear possi-
bility is to use KinectFusion within a sub-mapping framework. Ad-
dressing memory issues further, it would be possible to exploit spar-
sity in the TSDF using an adaptive grid representation. As shown in
Figure 4, there is only a relatively thin crust of non truncated values
near the surface, and techniques based on octrees [32] could exploit
the compressibility of such a function. Another important challenge
is to efficiently perform automatic relocalisation when the tracking
has failed in such large models.

A further interesting direction is to perform automatic semantic
segmentation over the volumetric representation that would enable
adaptation of reconstruction quality for specific objects or tasks.
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