
Super-Resolution Keyframe Fusion for
3D Modeling with High-Quality Textures

Robert Maier, Jörg Stückler, Daniel Cremers
Computer Vision Group, Technische Universität München, Germany

{maierr,stueckle,cremers}@in.tum.de

Abstract

We propose a novel fast and robust method for obtaining
3D models with high-quality appearance using commod-
ity RGB-D sensors. Our method uses a direct keyframe-
based SLAM frontend to consistently estimate the camera
motion during the scan. The aligned images are fused
into a volumetric truncated signed distance function rep-
resentation, from which we extract a mesh. For obtaining
a high-quality appearance model, we additionally deblur
the low-resolution RGB-D frames using filtering techniques
and fuse them into super-resolution keyframes. The meshes
are textured from these sharp super-resolution keyframes
employing a texture mapping approach. In experiments, we
demonstrate that our method achieves superior quality in
appearance compared to other state-of-the-art approaches.

1. Introduction

The wide availability of consumer RGB-D sensors has

boosted research in 3D reconstruction in recent years.

State-of-the-art methods in 3D model reconstruction yield

impressively accurate geometric reconstruction in real-

time [16, 24]. Such 3D reconstructions are well suitable

for 3D printing [21]. Fast and robust estimation of high-

quality visual appearance (i.e. texture) of the models has

been given less attention. This plays, however, an equally

important role for 3D modeling, for instance, of persons or

objects.

Modern texture mapping approaches can obtain good-

quality results, but are typically slow and impractical for

instant 3D scanning applications. As scanning the 3D ge-

ometry with RGB-D sensors is possible in real-time, also

the texture mapping process should be fast. We propose a

method for fast and accurate reconstruction of geometry as

well as appearance. Figure 1 shows a textured 3D model

generated from low-resolution (LR) RGB-D input frames

with our approach. For geometric reconstruction, we use

a direct keyframe-based RGB-D SLAM method in order

to estimate the camera trajectory consistently. Using these

pose estimates, the individual frames are integrated into a

volumetric truncated signed distance function (TSDF) rep-

resentation, from which a 3D mesh is extracted. For this

mesh we find a parametrization suitable for texture map-

ping. We significantly improve the quality of the gener-

ated texture maps through super-resolution (SR) fusion of

RGB-D frames and deblurring. Simple weighted median

filtering of projected color values onto the texture provides

high-quality appearance results.

In experiments, we compare our method to standard

pipelines that perform per-vertex coloring or texture map-

ping based on the original low-resolution frames. We

demonstrate superior results of our method with respect to

texture quality. We also evaluate the timing of our method

and find that it yields high-quality results in reasonable and

practical time for 3D scanning applications.

1.1. Related Work

Since the recent advent of low-cost commodity RGB-D

sensors, there has been extensive research in the field of

dense 3D reconstruction from RGB-D data. While generat-

ing highly accurate 3D models from RGB-D data has been

investigated intensively, there seems to be a shortage of re-

search in improving the visual appearance of such recon-

structions.

To obtain geometrically accurate 3D reconstructions,

Newcombe et al. [16] fuse RGB-D frames into a TSDF Vol-

ume and perform camera tracking against this model. Sturm

et al. [21] developed a similar approach for reconstructing

3D printable models of persons, paired with direct TSDF

tracking [1]. Other RGB-D SLAM methods [5, 20, 13, 8]

are based on frame-to-(key)frame tracking with trajectory

optimization and data fusion into a single model volume.

Kerl et al. [9] developed a robust dense visual SLAM sys-

tem that shows limited drift by combining dense robust

visual odometry estimation with pose graph optimization.

SLAM systems for reconstructing and mapping large-scale

environments have also been developed [17, 19].

The systems presented above can produce models of

2015 International Conference on 3D Vision

978-1-4673-8332-5/15 $31.00 © 2015 IEEE

DOI 

536

2015 International Conference on 3D Vision

978-1-4673-8332-5/15 $31.00 © 2015 IEEE

DOI 10.1109/3DV.2015.66

536

2015 International Conference on 3D Vision

978-1-4673-8332-5/15 $31.00 © 2015 IEEE

DOI 10.1109/3DV.2015.66

536



(a) RGB input images (b) Vertex colors (c) Texture mapping using super-resolution keyframes

Figure 1: We propose an efficient method for generating high-quality textures from low-resolution RGB-D frames. Our

approach significantly improves the visual quality of reconstructed 3D models while it is still fast enough for applicability in

real-world 3D scanning scenarios.

high metric precision, however the state-of-the-art for rep-

resenting the visual appearance in such 3D reconstruc-

tion systems is still volumetric averaging of per-vertex col-

ors, such that the color resolution is limited to mesh res-

olution. Mostly, these vertex colors are computed as a

weighted average of the observed colors for the respective

vertices [16, 23, 21]. To improve the appearance, weights

based on the normals computed from the depth image are

employed; to remove further artifacts, pixels close to depth

discontinuities are discarded.

However, to create photo-realistic 3D models of real-

world objects, the challenging problem of generating and

mapping high-quality textures from multiple input color im-

ages has been investigated intensively in the field of com-

puter graphics for decades. Without increasing the geomet-

ric complexity, textures (usually of higher resolution than

the mesh resolution) are mapped onto the mesh to enhance

the visual quality, with camera poses assumed to be given.

[15, 18] compute the texel colors using a weighted average

of the observations in the input color images. Instead of us-

ing the weighted average, Coorg and Teller [2] use a color

computation scheme based on weighted median to cope

with color outliers in the observations. Eisemann et al. [4]

correct for inaccuracies in camera poses and calibration us-

ing optical flow for mapping images to the texture map.

Lempitsky and Ivanov [11] and Gal et al. [6] select a single

input view per face and minimize seams, however the ap-

proaches suffer from high runtimes because of the computa-

tionally expensive combinatorial optimization. Variational

super-resolution methods, e.g. by Goldlücke et al. [7], pro-

duce compelling results, paired with impractical computa-

tion times of several hours in a controlled setup with only

a limited number of input views. Waechter et al. [22] tex-

ture large-scale scenes reconstructed with Structure-from-

Motion, however they rely on high-quality input images

and have long computation times with up to 80 minutes per

dataset.

The scenario of improving the visual appearance in

RGB-D based 3D reconstruction has not been tackled

extensively yet. Meilland and Comport [14] fuse low-

resolution images into a single high-resolution keyframe by

applying a super-resolution technique. The fused keyframes

exhibit an impressive level of detail, but the approach does

not create a globally consistent 3D model. Recently, Zhou

and Koltun [25] have shown that the colors of 3D models

obtained from handheld RGB-D cameras can be improved

substantially; within several minutes, they alternatingly op-

timize camera poses and non-rigid correction to correct for

imprecise camera localization and for complex distortions

resulting from inaccurate geometric models. However, they

use vertex colors of an upsampled mesh, leading to an in-

creasingly complex geometry with a still limited resolution

compared to texture maps.

To the best of our knowledge, we present the first method

for combining keyframe fusion with texture mapping in an

RGB-D based 3D reconstruction scenario. Our practical ap-

proach is efficient, with runtimes within a few minutes, and

suitable for generating high-quality texture maps from low-

quality color images obtained from consumer RGB-D sen-

sors.

1.2. Contributions

In summary, we propose a novel fast and robust 3D mod-

eling approach that provides accurate geometry and high-

quality appearance. Our method uses direct keyframe-based

RGB-D SLAM to find a consistent global image alignment,

and extracts a high-quality mesh from a fused TSDF repre-

sentation of the images.

537537537



• The mesh is parametrized in a texture map, which we

fill from fused super-resolution RGB-D keyframes.

• The super-resolution RGB-D keyframes are sharpened

using image deconvolution.

• Fast texture mapping is performed using the super-

resolution keyframes. High quality of the texture

is obtained through weighted median filtering of the

keyframe projections.

2. 3D Reconstruction System
In this section, we first describe the RGB-D sensor, the

acquired data and the used camera model. We then intro-

duce our 3D reconstruction system based on DVO-SLAM

by Kerl et al. [9] and the data fusion into a TSDF volume as

used by Newcombe et al. [16].

RGB-D Data Acquisition A calibrated Asus Xtion Pro

Live RGB-D sensor provides us with RGB color and depth

images at 30 fps at a resolution of w × h (in this case,

640× 480 pixels). To limit automatic color correction dur-

ing data acquisition, we fix exposure and white balance. We

assume that depth and color images are registered. Since

both color and depth images are utilized for real-time cam-

era tracking, we cannot use the SXGA (1280× 1024) color

images provided at only 10 fps. We denote RGB images

with C : ΩC → R
3 and depth images with Z : ΩZ → R.

Camera Model For the RGB-D sensor, we assume the

pinhole camera model with focal length fx, fy and optical

center cx, cy . The projection function π maps 3D points

p = (X,Y, Z)� to 2D pixels x = (x, y)�:

x = π(p) =

(
X

Z
fx + cx,

Y

Z
fy + cy

)
, (1)

while 2D pixel locations x are mapped back to 3D points

using their depth valuesZ(x) by the inverse projection π-1:

p = π-1(x,Z(x)) =
(
x− cx
fx

,
y − cy
fy

, 1

)�
Z(x). (2)

3D Reconstruction Framework DVO-SLAM performs

dense camera tracking in real-time on the CPU and min-

imizes the photometric and geometric error between two

RGB-D input frames to compute the relative pose. The use

of color images significantly improves camera tracking and

limits the drift of the SLAM system. Similarly, we perform

an entropy-based loop closure detection and continuously

optimize the pose graph in order to obtain a globally con-

sistent camera trajectory.

To reconstruct a dense 3D model in a post-processing

step, we fuse the N acquired RGB-D frames into a

TSDF volume using their estimated absolute camera

poses Ti = (R, t) ∈ SE(3) (with i ∈ 1 . . . N , t ∈ R
3

and R ∈ SO(3)). We extract a 3D mesh M = (V,F)
with vertices V and faces F using the Marching Cubes al-

gorithm. The camera poses exhibit only very limited drift

due to the global pose graph optimization and hence the re-

sulting 3D model is geometrically accurate.

3. Keyframe Fusion
Given an accurate geometric 3D model, reconstructed

as described above, and the absolute camera poses for

the input frames, we first fuse Nw neighboring frames

into a common keyframe representation of higher resolu-

tion. We denote the color image of such a SR keyframe

as C∗ : ΩC → R
3 and the corresponding depth image as

Z∗ : ΩZ → R. To store the depth fusion weights, we in-

troduce a depth weight image W∗ : ΩW → R. These SR

keyframes have the dimensions sw × sh, where s is a scale

factor that determines the amount of upsampling. We set the

pose T ∗ of the SR keyframe to the first pose of the Nw LR

frames to be fused. To integrate the LR images into the SR

images, we additionally need to define the scale-dependent

projection πs and inverse projection π-1
s , which use the up-

scaled intrinsic parameters sfx, sfy, scx, scy .

Depth Fusion We first fuse all Nw LR depth images into

the corresponding SR depth image. Therefore, we compute

the weights for the measured depth values, which is based

on a theoretical random error model [10], as follows:

wz(d) =
fb

σd
d−2, (3)

with the depth camera’s focal length f , baseline b and dis-

parity error standard deviation σd. Next, we transform the

current depth image i into the keyframe’s camera coordinate

system using the relative transformation T ∗-1Ti between

them:

p∗ = (X∗, Y ∗, Z∗)� = T ∗-1Tiπ
-1(x,Zi(x)). (4)

We then use the image point x∗ = πs(p
∗) of the projection

into the keyframe depth image to update the fused depth

values and depth weights by weighted averaging:

Z∗(x∗) = W∗(x∗)Z∗(x∗) + wz(Zi(x))Z
∗

W∗(x∗) + wz(Zi(x))
(5)

W∗(x∗) =W∗(x∗) + wz(Zi(x)) (6)

We achieve sub-pixel precision by updating all four neigh-

boring depth values when transforming and projecting a

depth value into the SR depth map. Occlusions are consid-

ered by fusing only the closest depth values within a given

distance. After integrating all Nw LR depth images, we ob-

tain the fused depth image Z∗ for the SR keyframe.

538538538



Color Fusion We use the fused depth imageZ∗ to project

the SR color image pixels into the LR color images. This

allows us to directly look up the observed color values ci
using bilinear interpolation:

ci = Ci(π(Ti
-1T ∗π-1

s (x,Zi(x)))). (7)

For every observation ci, we also compute its weight

wc
i = Biwz(Zi(x)), (8)

where Bi is a measure of blurriness of the color image Ci
according to Crete et al. [3], which downweighs views with

strong motion blur. Integrating the depth into the color

weights enforces that objects closer to the camera obtain

higher weights. We store the observed colors and weights

for pixel x in its set of color observationsOx = {(ci, wc
i )}.

In order to increase color fidelity, we prune observations

fromOx with missing depth values or that are within a win-

dow of 7× 7 pixels around depth discontinuities. Instead of

calculating the weighted mean for averaging the color, we

calculate the weighted median, for each color channel sep-

arately:

C∗(x) = argmin
c

∑
(ci,wc

i )∈Ox

wc
i ‖c− ci‖. (9)

Since we usually have many observations per pixel, the use

of weighted median is valid, which results in an overall

sharper texture. The median selects the center probable

value in the distribution of colors, while the mean would

be heavily affected by outliers. Integrating weights into the

median allows for incorporating a confidence or a prioriti-

zation of the individual color samples.

Before fusing the LR color images into the SR keyframe,

we apply a Wiener filter on these LR color images as a pre-

processing step. This removes motion blur and notably im-

proves the sharpness of the visual appearance.

Note that we perform the keyframe fusion as a post-

processing step; however, it is reasonable to perform this

step online whenever a new keyframe is detected.

4. High-Quality Texture Mapping
In this section, we introduce our method for texture map-

ping from fused SR keyframes. First, we explain the com-

putation of per-vertex colors based on a weighted median

filtering scheme, applicable also for recomputing the ver-

tex colors. We afterwards present our texture mapping ap-

proach, in which we compute the texel colors using the

weighted median from SR keyframe color images.

4.1. Vertex Color Computation

In order to improve the colors of 3D meshes, a very com-

mon approach is to recompute the per-vertex colors of the

3D mesh vertices v ∈ V . We therefore need to determine

the views, in which a vertex is visible. To check if vertex

v ∈ R
3 is visible in view i, we render the mesh M into a

virtual image using its pose Ti and the depth camera intrin-

sics. v is visible in the image, if its depth value is compati-

ble with the depth in the depth buffer used for rendering. We

then get the observed color cvi using bilinear interpolation:

cvi = Ci(π(Ti
-1v)). (10)

The observation weights wv
i of vertex v in its input views

are computed as follows:

wv
i =

cos(θ)Bi

d2
, (11)

where Bi is again the blurriness measure of color image

Ci and d is the distance from v to the camera correspond-

ing to Ci; θ represents the angle between the vertex nor-

mal and the view vector at v for the camera. We store all

color observations for vertex v and their respective weights

in Ov = {(cvi , wv
i )}, observations close to depth disconti-

nuities are discarded.

We can now compute the final vertex color c∗v as the

weighted mean of the observations:

c∗v = argmin
cv

∑
(cvi ,w

v
i )∈Ov

wv
i ‖cv − cvi ‖2. (12)

Since we assume that each vertex has many observations,

we can also compute the final color c∗v (separately for each

color channel) using a weighted median filtering scheme:

c∗v = argmin
cv

∑
(cvi ,w

v
i )∈Ov

wv
i ‖cv − cvi ‖. (13)

Given enough views that observe a vertex, this simple

method already improves the mesh colors and results in a

more detailed appearance, as demonstrated in Section 5.1.

4.2. Texture Mapping

Based on the introduced weighted median color compu-

tation scheme, we employ texture mapping to further im-

prove the appearence of 3D models. In particular, we use

the fused SR keyframes of Section 3 for texture mapping,

leading to a significantly higher resolved visual appearance.

We denote a texture as T : ΩT → R
3, which stores a color

value at every texel t ∈ ΩT .

Texture Parametrization For working with texture

maps, a three-dimensional mesh needs to be projected onto

a planar two-dimensional texture T first. We beforehand

simplify the mesh geometry by decimating the number of

mesh triangles. This usually results in larger triangles that

can be textured more efficiently with larger patches, while

539539539



the geometry is still preserved well. While different pla-

nar parametrization methods exist, our approach is in gen-

eral independent of the chosen parametrization, as long as

the mesh faces contain texture coordinates. In practice,

we mostly use Least Squares Conformal Maps by Levy et

al. [12], or a simple arrangement of the mesh triangles on

the texture within a rectangular grid.

Since there is a unique mapping from a texel to its con-

taining face, we can determine the respective surround-

ing vertices for each texel. The barycentric mapping

ψ : ΩT → R
3 performs a one-to-one mapping from 2D

texel coordinates to 3D world coordinates. Using barycen-

tric interpolation, we can compute interpolated 3D vertices

vt corresponding to 2D texels t and vice versa:

vt = ψ(t). (14)

Texel Color Computation To compute the texel color

for every texel t in the texture map, we employ only the

N∗ SR keyframes (C∗l ,Z∗l ) with camera poses T ∗l (with

l ∈ 1 . . . N∗), generated as described in Section 3.

We collect the observations of the texel by first com-

puting its 3D vertex position vt according to Equation

(14). We then determine the set of color observations

Ot = {(ctl , wt
l )} for vt analogous to Equations (10) and

(11). From these observations, we compute the final texel

colors by again applying a weighted median color compu-

tation scheme:

T (t) = argmin
ct

∑
(ctl ,w

t
l )∈Ov

wt
l‖ct − ctl‖. (15)

5. Experimental Results
In this section, we evaluated our approach on real-world

datasets. Three evaluation sequences face, phone and key-
board were acquired using a handheld Asus Xtion Pro Live,

details are given in Table 1. We captured RGB-D data at a

low resolution of 640 × 480 pixels at 30 fps, with fixed ex-

posure and white-balance.

The following experimental results demonstrate that (1)

vertex recoloring using weighted median filtering improves

the colors of 3D models compared to weighted mean, (2)

fusing LR input frames into SR keyframes and using them

for texture mapping improves the visual quality substan-

tially, and (3) the proposed method is efficient and practical

for real-world 3D scanning applications. All experiments

were performed on a standard desktop PC with Intel Core

i7-2600 CPU with 3.40GHz and 8GB RAM.

5.1. Vertex Recoloring using Weighted Median

First, we demonstrate that the visual appearance of 3D

models can already be improved by using a weighted me-

dian color integration scheme. Figure 2 shows that the

face phone keyboard

# RGB-D frames 512 1359 642

# vertices (original) 159583 82942 155842

# triangles (original) 319176 165888 311686

# triangles (decimated) 40000 40000 40000

Table 1: Details of the acquired real-world datasets and the

corresponding reconstructed 3D meshes.

(a) Unweighted mean (b) Weighted mean (c) Weighted median

Figure 2: Improving the vertex colors of 3D models: (a) col-

ors computed using the unweighted mean of the vertex can

be improved by (b) using the weighted mean. (c) Applying

the weighted median further improves the visual quality and

preserves a higher level of detail.

weighted mean in combination with discontinuity checks

already improves the vertex colors significantly compared

to unweighted mean. The weighted median increases the

sharpness and level of detail even further and leads to a

more realistic model. Still, the texture resolution is limited

by the number of vertices so far. Mesh subdivision increases

the number of vertices, but the increasing geometric mesh

complexity makes processing the mesh intractable.

5.2. Keyframe Fusion and Texture Mapping

After showing that a weighted median color computation

scheme has advantages compared to weighted mean, we in-

vestigate how texture mapping with weighted median filter-

ing further improves the appearence of 3D models. In the

following, we show qualitative results of texture mapping

from fused SR keyframes in comparison with per-vertex

colors, which serves as currently most popular state-of-the-

art.

By fusing several LR color images into a SR keyframe,

we obtain high-quality frames from low-quality input data.

540540540



(a) Without deconvolution (b) With deconvolution

Figure 4: (a) The textures computed from SR keyframes

are substantially improved by (b) applying deconvolution

(e.g. using a Wiener filter) to the input images before the

keyframe fusion.

(a) Keyframes of dimensions

1280× 960
(b) Keyframes of dimensions

2560× 1920

Figure 5: (a) The textures generated from keyframes of

dimensions 1280× 960 show slightly fewer details than

(b) the ones generated from keyframes of dimensions

2560× 1920.

Depending on the scale factor s, the SR images have a res-

olution of 1280 × 960 (s = 2) or 2560 × 1920 (s = 4).

Figure 3 illustrates that both color and depth of the result-

ing fused SR keyframes exhibit more details compared to

the LR input color images and depth maps.

An important aspect of the keyframe fusion is the decon-

volution of the input images with a Wiener filter for deblur-

ring. Figure 4 shows the results of generating a texture map

for a 3D model from SR keyframes with and without de-

convolution. The texture computed from the deblurred SR

keyframes (Figure 4b) exhibits a sharper texture with sub-

stantially more details compared to Figure 4a. For deblur-

ring, a Wiener filter is applied on the LR input images as a

pre-processing step before fusing them into the keyframes.

Next, we compare the reconstructed surface colors de-

pending on the scale factor s for the SR keyframe dimen-

sions. The textures shown in Figure 5 show that the level of

detail can be slightly improved by using a higher keyframe

resolution of 2560× 1920 (s = 4) compared to a resolution

of 1280× 960 (s = 2).

For comparison, Figure 6 finally shows the improve-

ments of texture mapping with SR keyframes compared to

texture mapping with the LR input images only.

To demonstrate the practicability of our approach, we

(a) With LR input frames (b) With SR keyframes

Figure 6: (a) Texture mapping with LR input frames only

yields inferior results compared to (b) texture mapping with

SR keyframe fusion.

have reconstructed 3D models of the face, phone and key-
board datasets. All textures have been computed by fusion

into SR keyframes of dimensions 2560× 1920 and using

weighted median filtering for computing the texel colors.

As a pre-processing step, a Wiener filter has been applied

to the LR input RGB images. Figures 1, 7 and 8 show the

results. The texture mapped 3D models provide a photo-

realistic appearance and exhibit fine surface details that are

not visible in the models with per-vertex colors only.

In Figure 8c, the cable at the top of the keyboard is how-

ever not represented correctly in the texture. This may ei-

ther be due to inaccuracies in the estimated camera trajec-

tory or due to an inaccurate geometric model. To compen-

sate for this, an approach similar to Zhou and Koltun [25]

must be developed, which optimizes the camera poses as

well as non-rigid image corrections.

5.3. Runtime Evaluation

We finally evaluate the runtime and efficiency of the pro-

posed texture mapping method, in particular the runtimes

for keyframe fusion and texture mapping. Table 2 gives the

results. With runtimes of between one and a few minutes,

our approach is a very efficient method for generating high-

quality texture maps. Since our implementation is based

only on the CPU, a major speed-up can be achieved by port-

ing the algorithm to the GPU. This holds in particular for the

keyframe fusion, which has already been shown to work in

real-time on a GPU [14].

6. Conclusion
We presented a novel efficient method for high-quality

texture mapping in RGB-D-based 3D reconstruction ap-

proaches. Our method fuses low-quality color images from

commodity depth sensors into super-resolution keyframes.

These high-quality keyframes in turn are then mapped into a

global texture for the 3D model, resulting in a significantly

improved texture quality compared to simple volumetric

blending. We deblur input images and use the weighted

median for computing the texel colors from observations,

541541541



(a) LR input color image (b) Fused SR color image

(c) LR input depth map (Phong shading) (d) Fused SR depth map (Phong shading)

Figure 3: Fusing several LR input color images into a single SR keyframe allows to directly obtain high-quality color images.

Compared to the LR input color image (a), the fused SR color image (b) with a resolution of 2560 × 1920 (scale s = 4)

exhibits more details. Similarly, the LR input depth map (c) shows significantly more noise than the fused SR depth map (d).

face phone keyboard

s t [s] fps t [s] fps t [s] fps

Texture Mapping 91.5 5.6 330.8 4.1 128.8 5.0

Keyframe Fusion 2 57.5 8.9 222.0 6.1 72.1 8.9
SR Texture Mapping 2 18.7 2.8 50.7 2.7 18.8 3.5

Keyframe Fusion 4 100.9 5.1 362.8 2.2 214.9 3.0
SR Texture Mapping 4 26.4 2.0 58.2 1.4 42.6 1.5

Table 2: Runtimes (in seconds) for texture mapping without

SR keyframe fusion and texture mapping with SR keyframe

fusion.

which preserves a high level of detail. Using the weighted

median already provides better results for vertex coloring

compared to the weighted mean. The weights in our method

consider criteria such as view-angle, motion blur, and dis-

tance to the surface.

We have shown in experimental results that our method

produces high-quality textures that substantially increase

the photo-realism of the reconstructed 3D models. At the

same time, our method is a very efficient and practical post-

processing step with runtimes within a few minutes, making

it useful for real-world 3D scanning application scenarios.

Acknowledgements

This work has been partially funded by the ERC Proof

of Concept grant CopyMe3D (GA 632200) and the BMWi

ZIM project 2Dzu3D (KF2080213CR4).

References
[1] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-

time camera tracking and 3D reconstruction using signed dis-

tance functions. In RSS, 2013.

[2] S. Coorg and S. Teller. Automatic extraction of textured ver-

tical facades from pose imagery. 1998.

[3] F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas. The blur

effect: perception and estimation with a new no-reference

perceptual blur metric. In SPIE, pages 64920I–64920I, 2007.

542542542



(a) RGB input images (b) Vertex colors (c) Texture mapping using SR keyframes

Figure 7: 3D model of the phone dataset reconstructed and textured using our approach: We show (a) some input images and

(b) the 3D model with vertex colors only. (c) The texture mapped reconstruction provides a significantly more detailed visual

appearance.

(a) RGB input images

(b) Vertex colors

(c) Texture mapping using SR keyframes

Figure 8: 3D model of the keyboard dataset reconstructed and textured using our approach: We show (a) some input images

and (b) the 3D model with vertex colors only. (c) The texture mapped reconstruction provides a significantly more detailed

visual appearance.

543543543



[4] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert,

E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sellent. Float-

ing textures. In Computer Graphics Forum, volume 27,

pages 409–418, 2008.

[5] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and

W. Burgard. An evaluation of the RGB-D SLAM system. In

ICRA, 2012.

[6] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-

Or. Seamless montage for texturing models. In Computer
Graphics Forum, volume 29, pages 479–486, 2010.

[7] B. Goldlücke, M. Aubry, K. Kolev, and D. Cremers. A

super-resolution framework for high-accuracy multiview re-

construction. IJCV, 106(2):172–191, Jan. 2014.

[8] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-

D mapping: Using depth cameras for dense 3D modeling

of indoor environments. In ISER, volume 20, pages 22–25,

2010.

[9] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for

RGB-D cameras. In IROS, 2013.

[10] K. Khoshelham and S. Elberink. Accuracy and resolution of

kinect depth data for indoor mapping applications. Sensors,

12(2):1437–1454, 2012.

[11] V. Lempitsky and D. Ivanov. Seamless mosaicing of image-

based texture maps. In CVPR. IEEE, 2007.

[12] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares

conformal maps for automatic texture atlas generation. ACM
Transactions on Graphics (TOG), 21(3):362–371, 2002.

[13] R. Maier, J. Sturm, and D. Cremers. Submap-based bun-

dle adjustment for 3D reconstruction from RGB-D data. In

GCPR, 2014.

[14] M. Meilland and A. Comport. Super-resolution 3D tracking

and mapping. In ICRA, 2013.

[15] P. Neugebauer and K. Klein. Texturing 3d models of

real world objects from multiple unregistered photographic

views. In Computer Graphics Forum, volume 18, pages 245–

256, 1999.

[16] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges,

J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and

A. Fitzgibbon. KinectFusion: Real-time dense surface map-

ping and tracking. In ISMAR, 2011.

[17] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.

Real-time 3D reconstruction at scale using voxel hashing.

ACM Transactions on Graphics (TOG), 32(6):169, 2013.

[18] I. Stamos and P. Allen. 3-d model construction using range

and image data. In CVPR, 2000.

[19] F. Steinbrücker, J. Sturm, and D. Cremers. Volumetric 3D

mapping in real-time on a CPU. In ICRA, 2014.

[20] J. Stückler and S. Behnke. Multi-resolution surfel maps for

efficient dense 3D modeling and tracking. Journal of Visual
Communication and Image Representation, 25(1):137–147,

2014.

[21] J. Sturm, E. Bylow, F. Kahl, and D. Cremers. CopyMe3D:

Scanning and printing persons in 3D. In GCPR, 2013.

[22] M. Waechter, N. Moehrle, and M. Goesele. Let there be

color! Large-scale texturing of 3D reconstructions. In

ECCV. 2014.

[23] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. Mc-

Donald. Robust real-time visual odometry for dense RGB-D

mapping. In ICRA, 2013.

[24] C. Wu, M. Zollhöfer, M. Nießner, M. Stamminger, S. Izadi,

and C. Theobalt. Real-time shading-based refinement for

consumer depth cameras. SIGGRAPH Asia, 2014.

[25] Q.-Y. Zhou and V. Koltun. Color map optimization for 3D

reconstruction with consumer depth cameras. ACM Transac-
tions on Graphics (TOG), 33(4):155, 2014.

544544544


