

Thomas Funkhouser Princeton University

Goal:

- Describe 3D models algorithmically
- Best for models resulting from ...
 - Repeating processes
 - Self-similar processes
 - Random processes

Advantages:

- Automatic generation
- Concise representation
- Parameterized classes of models

Sweeps

- Fractals
- Grammars
- **Probabilistic models**
- Probabilistic grammars

Fractals

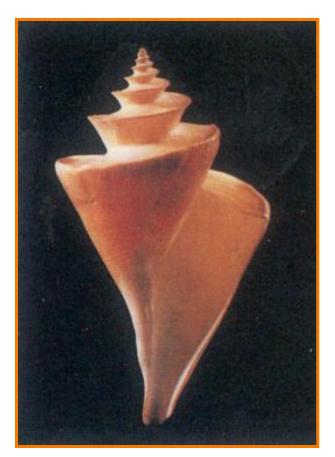
Grammars

Probabilistic models

Probabilistic grammars

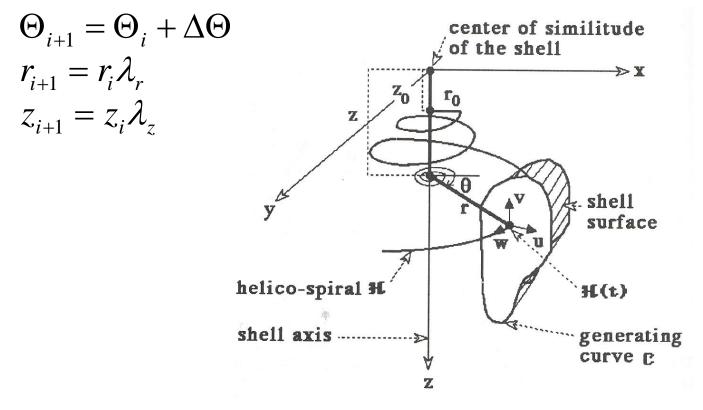
Create 3D polygonal surface models of seashells

"Modeling Seashells," Deborah Fowler, Hans Meinhardt, and Przemyslaw Prusinkiewicz, Computer Graphics (SIGGRAPH 92), Chicago, Illinois, July, 1992, p 379-387.

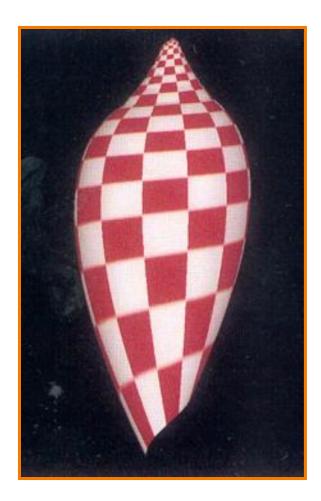


Sweep generating curve around helico-spiral axis

Helico-spiral definition:

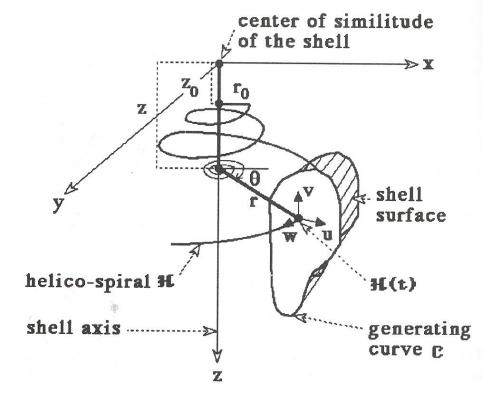


Connect adjacent points to form polygonal mesh



Model is parameterized:

- Helico-spiral: z_0 , λ_z , r_0 , λ_r , N_{θ} , $\Delta\theta$
- \circ Generating curve: shape, N_c, λ_c

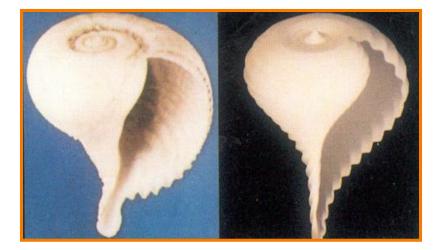


Generate different shells by varying parameters

Different helico-spirals

Generate different shells by varying parameters

Different generating curves



Generate many interesting shells with a simple procedural model!

Fowler et al. Figures 4,5,7

Sweeps

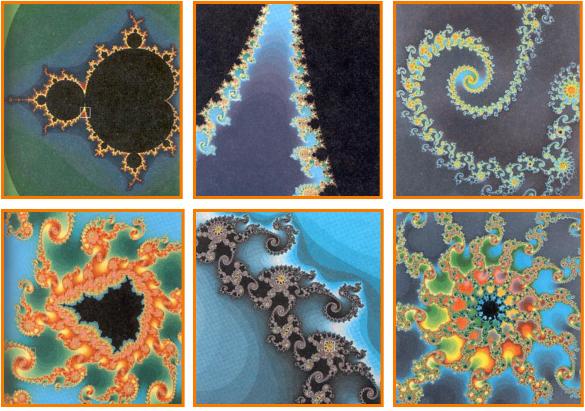
Grammars

Probabilistic models

Probabilistic grammars

Fractals

Defining property:Self-similar with infinite resolution



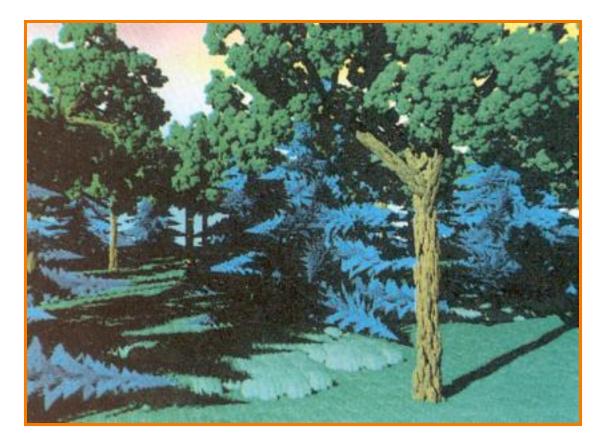
Mandelbrot Set

H&B Figure 10.100

Fractals

Useful for describing natural 3D phenomenon

- Terrain
- Plants
- \circ Clouds
- Water
- Feathers
- Fur
- etc.



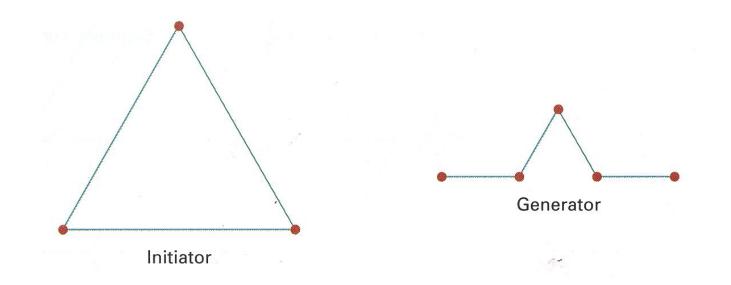
H&B Figure 10.80

Deterministically self-similar fractals Parts are scaled copies of original

Statistically self-similar fractals Parts have same statistical properties as original

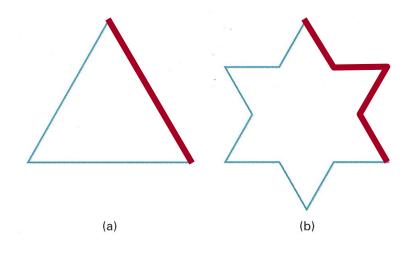
General procedure:

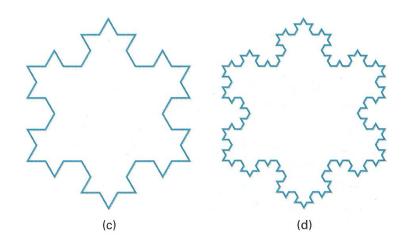
- Initiator: start with a shape
- Generator: replace subparts with scaled copy of original



H&B Figure 10.68

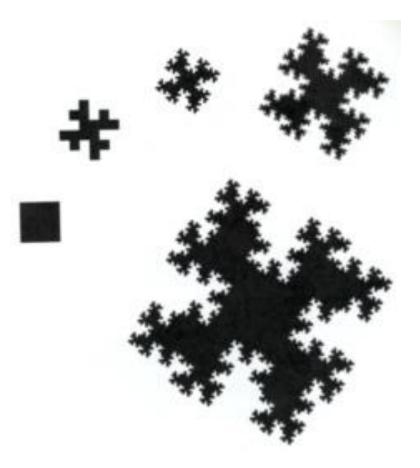
Apply generator repeatedly





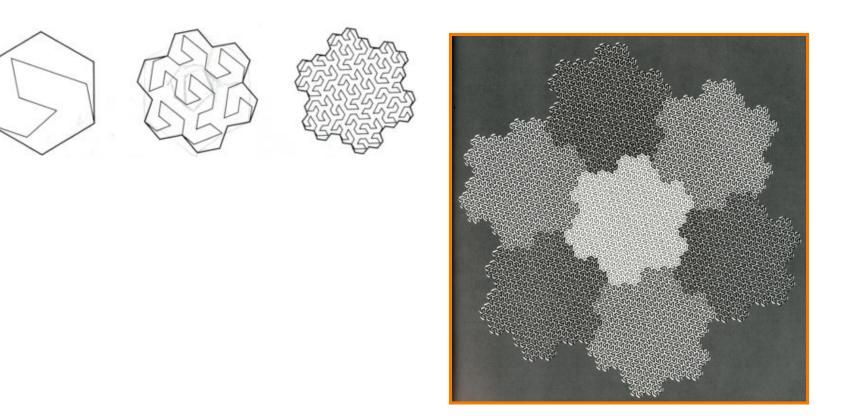
Koch Curve H&B Figure 10.69

Useful for creating interesting shapes!



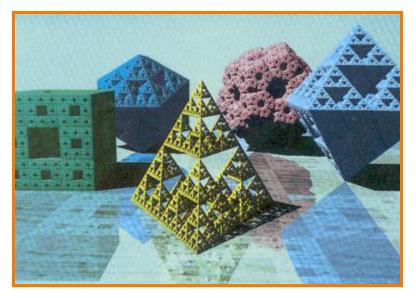
Mandelbrot Figure X

Useful for creating interesting shapes!



Mandelbrot Figure 46

Useful for creating interesting shapes!



H&B Figures 75 & 109

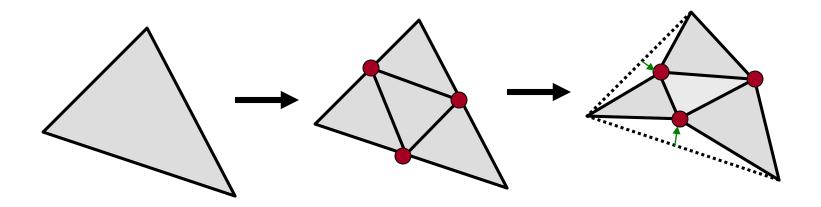
Deterministically self-similar fractals Parts are scaled copies of original

Statistically self-similar fractals

Parts have same statistical properties as original

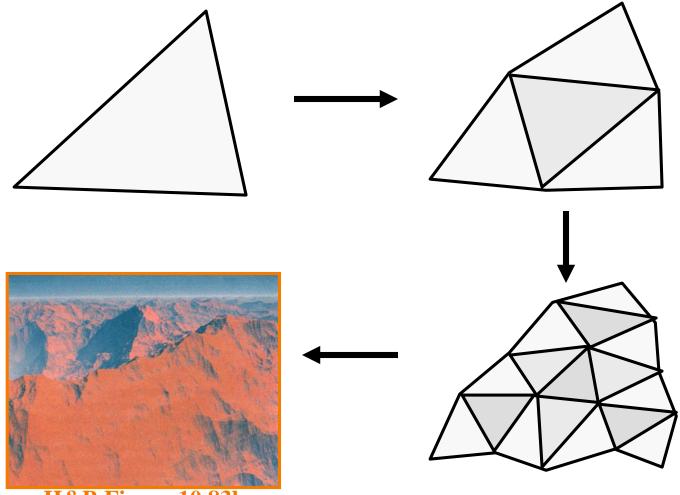
General procedure:

- Initiator: start with a shape
- Generator: replace subparts with a self-similar random pattern



Random Midpoint Displacement

Example: terrain



H&B Figure 10.83b

Useful for creating mountains

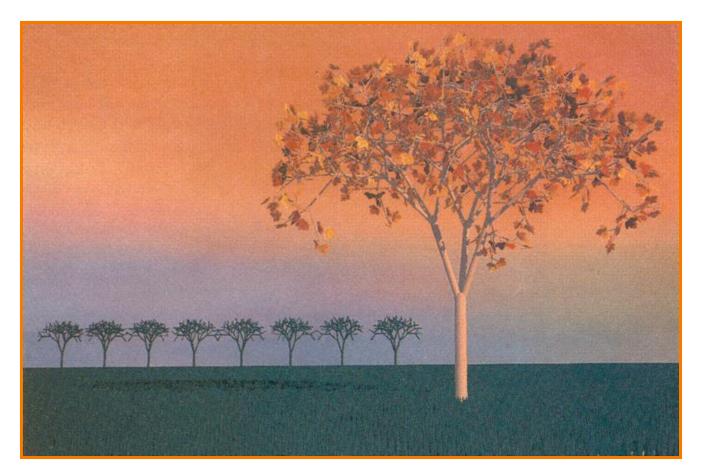
H&B Figure 10.83a

Useful for creating 3D plants



H&B Figure 10.82

Useful for creating 3D plants



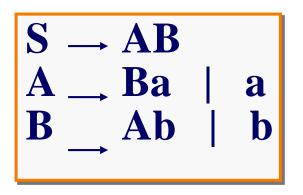
H&B Figure 10.79

Sweeps

- **Fractals**
- Grammars -
- Probabilistic models
- Probabilistic grammars

Grammars

Generate description of geometric model by applying production rules



ab bab baab abaab

- •
- •
- •

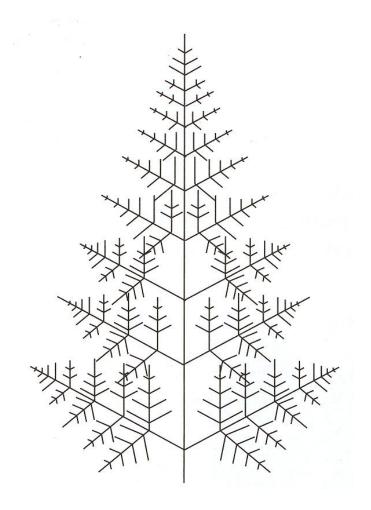
Grammars

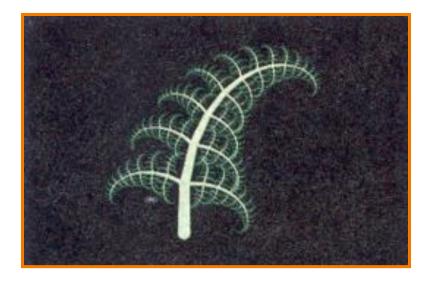
Useful for creating plants

Tree → Branch Tree | Leaf Branch → Cylinder | [Tree]

Grammars

Useful for creating plants





H&B Figure 10.77

Sweeps

- Fractals
- Grammars

Probabilistic models -

Probabilistic grammars

Probabilistic Models

┿

Exemplar scenes

Database of Scenes

Probabilistic Model of Shape

Synthesized novel scenes

Probabilistic Models

Exemplar scenes

Database of Scenes

Probabilistic Model of Shape

Challenge

Need to learn a model with great generality from few examples

Synthesized novel scenes

Probabilistic Model of Scenes

Represent the probability of a scene S by a generative model based on category cardinalities (c), support hierarchy topology relationships (t), and spatial arrangement relationships (a)

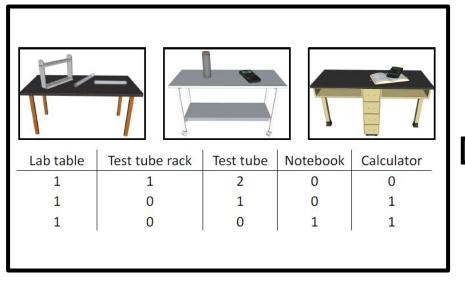
P(S) = P(c,t,a) = P(a/t,c) P(t/c) P(c)

Exemplar scenes

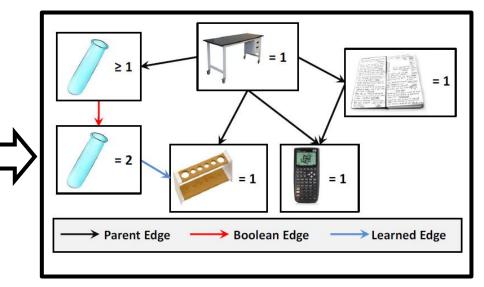
Probabilistic Model of Scenes

Category cardinalities: P(c)

- Represent with Bayesian network
- Boolean random variables (# desks > 1?)
- Add support surface constraints



Object frequencies in target scenes + support constraints



Bayesian network

Probabilistic Model of Scenes

Support relationships: P(t/c)

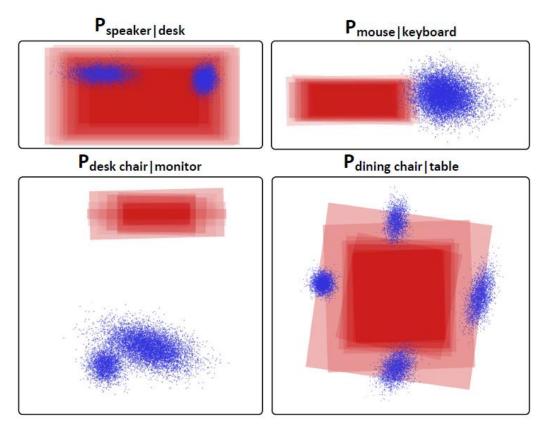
- Boolean random variables (desk supports keyboard?)
- Learn frequencies for pairs of categories
- Total probability is product over all objects in scene

$$P(t|c) = \prod_{o} P(C(o), C(support(o)))$$

Probabilistic Model of Scenes

Spatial arrangements: P(a/t,c) = R(a,t,c)S(a,t,c)

- Random variables for relative positions and orientations
- Pairwise distributions of spatial relationships

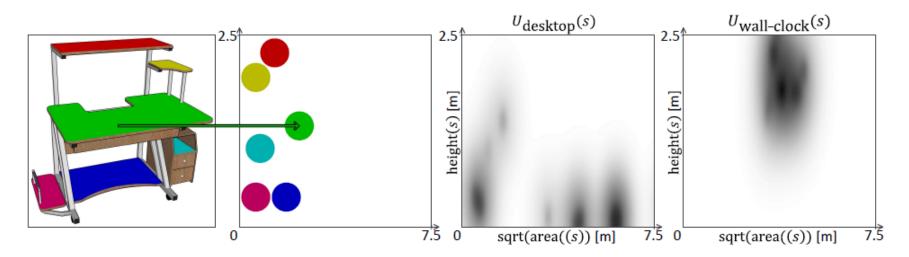


Distributions of spatial relationships for pairs of object categories

Probabilistic Model of Scenes

Spatial arrangements: P(a/t,c)=R(a,t,c)S(a,t,c)

- Random variables for relative positions and orientations
- Pairwise distributions of spatial relationships
- Feature distributions for positions on support surfaces



Distributions of geometric features of support surfaces

Side Note on Object Categories

Define categories of objects based on their contexts in a scene rather than basic functions

 Learned from examples by clustering of objects with similar spatial neighborhoods

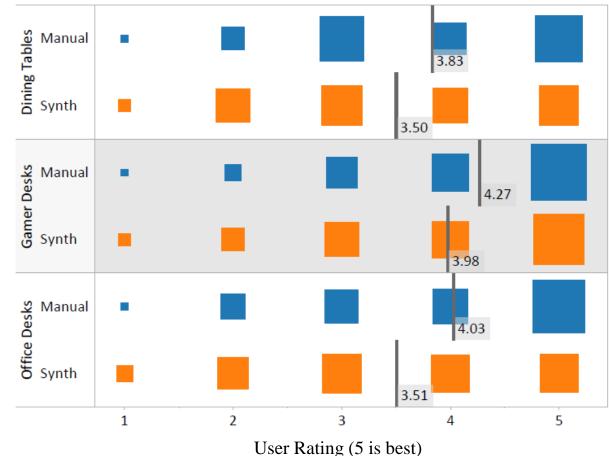
Some Contextual Object Categories

Scene Synthesis Results

Synthesized novel scenes

Scene Synthesis Results

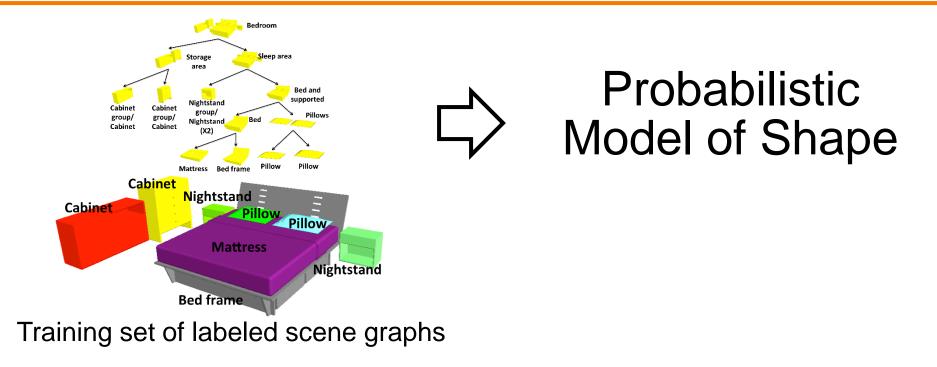
User study suggests that people find our synthesized scenes almost as good as manually created ones

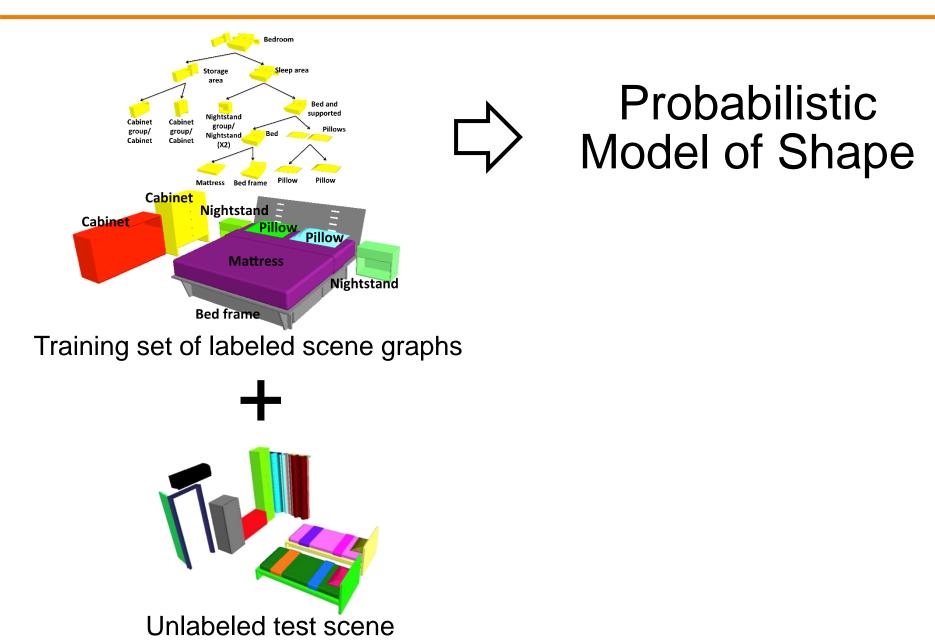


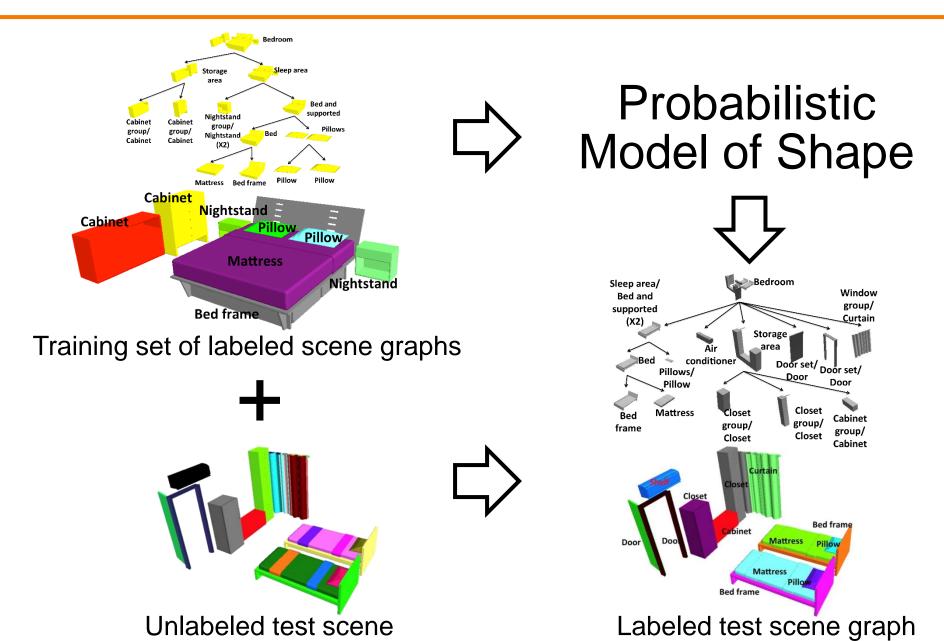
Procedural Modeling

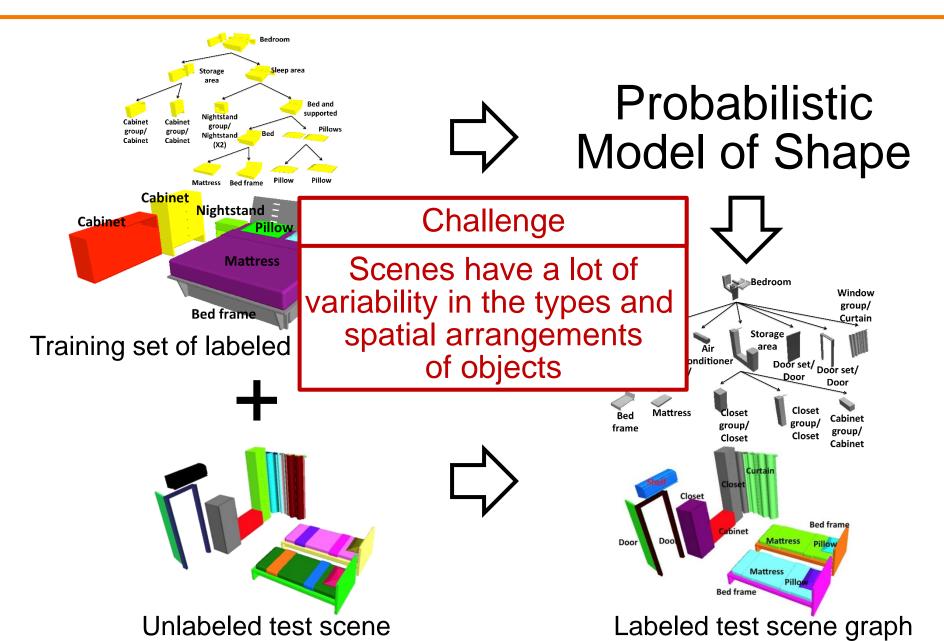
Sweeps

- Fractals
- Grammars
- **Probabilistic models**
- Probabilistic grammars -

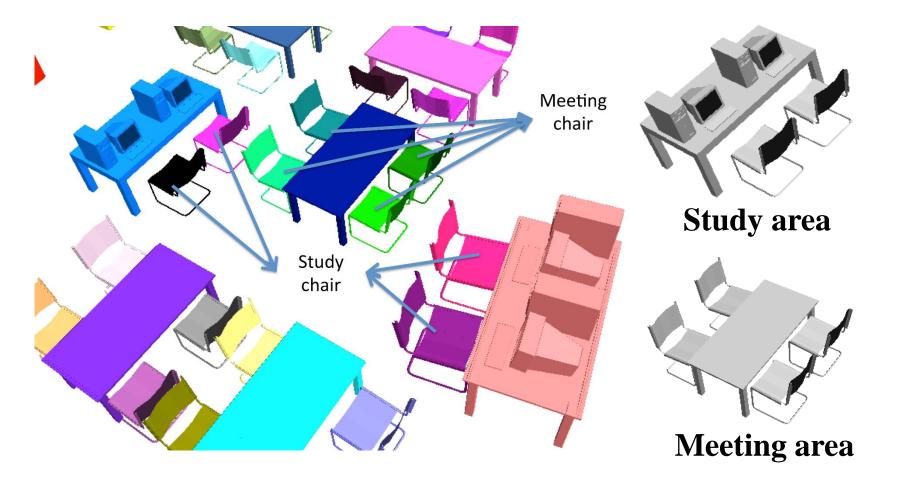




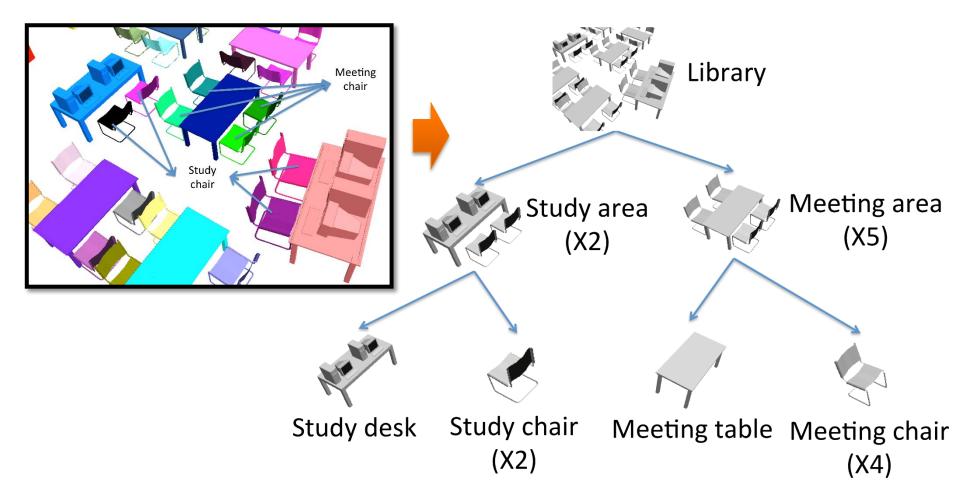




Semantic and functional relationships are often more prominent within hierarchical contexts



We learn a probabilistic grammar from examples, and then use it to parse new test scenes



Labels: object group, object category, object part sleep area, bed, curtain piece

Rules: derivation from a label to a list of labels bed \rightarrow bed frame mattress

Probabilities:

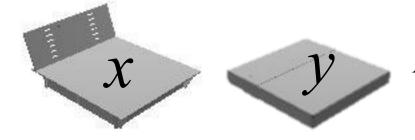
Derivation: $P_{nt}(rule | lhs)$

bed $\Rightarrow_{P=0.8}$ frame mattress

Cardinality distribution: P_{Card} (#, rhs | lhs) sleep area \rightarrow bed nightstand rug ...

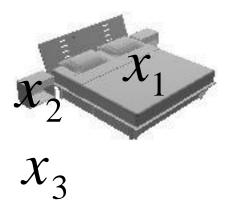
$P_{card}(* sleeparea)$	0	1	2	3	4+
bed					
nightstand	0.3	0.3	0.4	0	0
rug					

Shape descriptor probability: $P_g(x \mid label)$



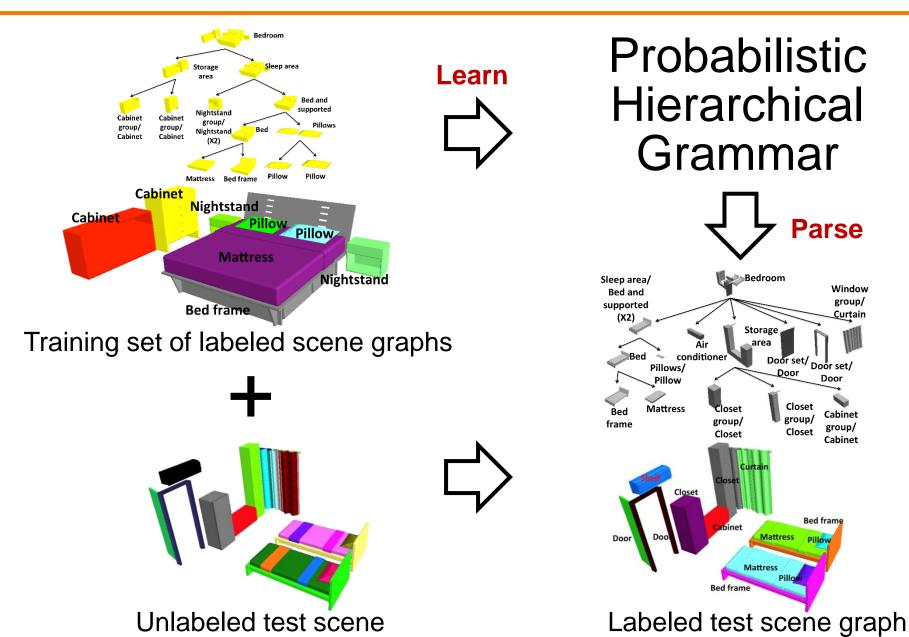
 $P_g(x | bedframe) > P_g(y | bedframe)$

Spatial relationships: $P_g(v \mid lhs, rhs1, rhs2)$

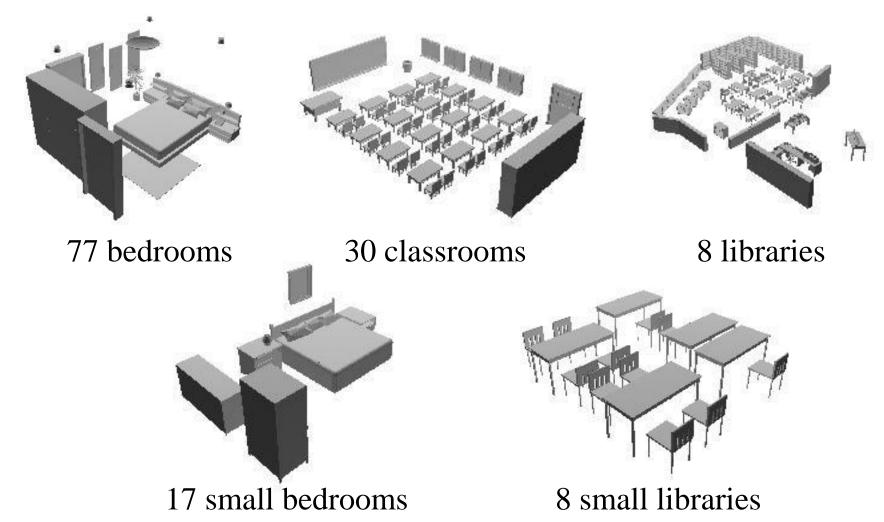


 $P_s(x_1, x_2 | sleeparea, bed, nightstand) >$ $P_s(x_1, x_3 | sleeparea, bed, nightstand)$

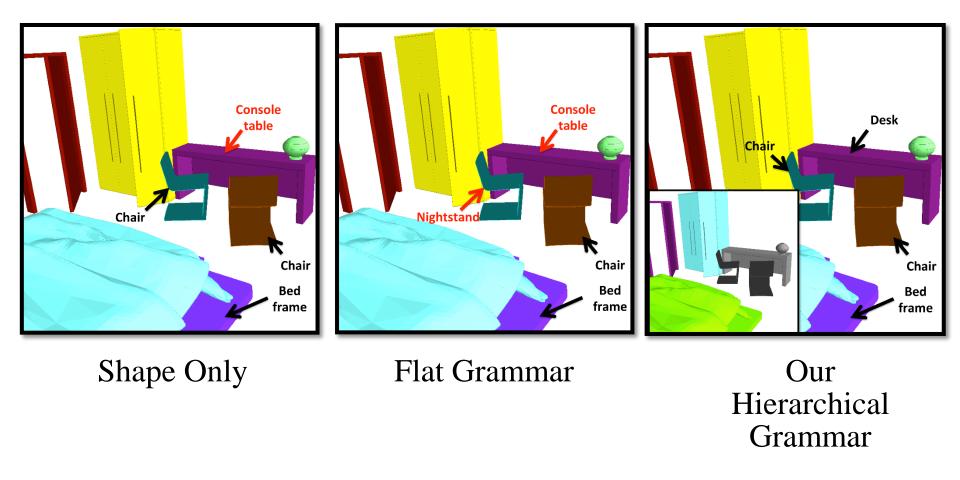
Grammar Learning and Parsing



Learned hierarchical probabilistic grammars from scenes in Trimble 3D Warehouse

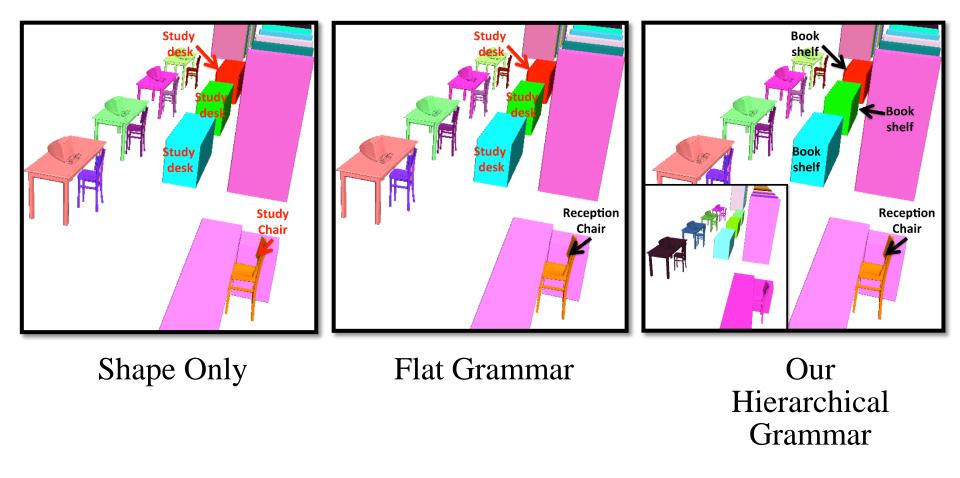


Parsed left-out scenes with learned grammar

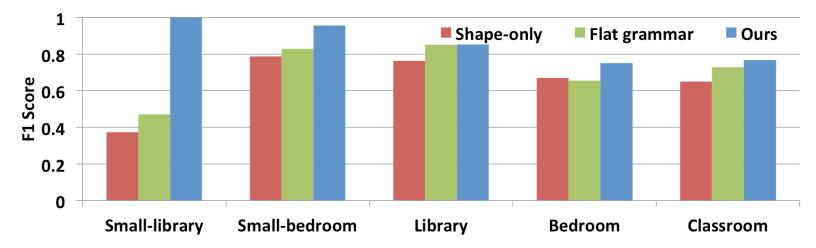


Comparison of our parsing results to other methods

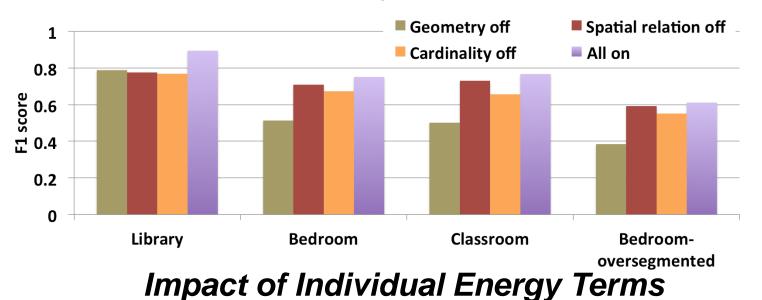
Parsed left-out scenes with learned grammar



Comparison of our parsing results to other methods



Comparison of object classification



Procedural Modeling

- Sweeps
- Fractals
- Grammars
- **Probabilistic models**
- Probabilistic grammars
- Probabilistic programs ???

Procedural Modeling Summary

Motivation:

Describe 3D models algorithmically

Methods:

- Sweeps, fractals, grammars
- Probabilistic models, grammars, and programs (?)

Advantages:

- Automatic generation
- Concise representation
- Parameterized classes of models
- Learned from examples