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Goal

Find maps between surfaces
 Non-rigid 

 Bijective

 Smooth

 Shape preserving

 Automatic

 Efficient computation

 Provide metric

 Semantic alignment



Motivating Applications

Finding corresponding points on surfaces enables …
 Surface comparison

 Collection analysis

 Property transfer

 Morphing

 etc.

[Praun et al.]



Problem 1

Find a sparse set of feature correspondences 



Problem 2

Compute a dense map from 

a sparse set of feature correspondences

Least Squares Conformal Map
(preserve angles as best as possible)

Zeng et al., 2008]
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Feature Correspondence Search

For each coarse set of feature correspondences:
 Measure the deformation required to align them

 … maybe by solving problem 2

 Remember the one with least deformation



Feature Correspondence Search

Measures of distortion:
 Differences in geodesic distances

 Differences in conformal factors (angles)

 etc.

[Zeng et al., 2008]

Branch and bound
Priority-driven search

etc.

Least squares conformal map
aligning corresponding feature points

Feature points



Outline

Introduction

Some surface mapping algorithms
 Feature correspondence search

High-dimensional embedding

 Möbius transformations

 Blended maps

Example Application

Conclusion

Future work



High-Dimensional Embedding

Find nearest neighbors after spectral embedding

Eigenfunctions of the Laplacian
[Lombaert et al. 2011]

Flip, reorder, 
closest points, etc.



High-Dimensional Embedding

Find nearest neighbors after spectral embedding

Eigenfunctions of the Laplacian
[Lombaert et al. 2011]



High-Dimensional Embedding

Find nearest neighbors after heat kernel embedding 

implied by a single point correspondence

Heat Kernel Map
[Ovsjanikov et al. 2010]



Outline

Introduction

Some surface mapping algorithms
 Feature correspondence search

 High-dimensional embedding

Möbius transformations

 Blended maps

Example Application

Conclusion

Future work



Möbius Transformations

It would be nice to search a low-dimensional space 

of transformations to align non-rigid surfaces …

Scan A Scan B Best 
Alignment

RANSAC
Hough transform

Geometric hashing
etc.



Key Observation

The Möbius group provides a low-dimensional space 

to search efficiently for the “best” conformal map 

between genus zero surfaces



Möbius Transformations I

Möbius transformations are a group of functions 

on the extended complex plane that represent 

bijective, conformal maps

Mobius
Transformation

Extended complex plane

z

Riemann
Sphere

Bijective
Conformal

Map
=



Möbius Transformations II

Möbius transformations are simple rational functions:
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They have only six degrees of freedom
(they can be computed analytically 
from three point correspondences)



Möbius Transformations III

Therefore, any three point correspondences define 

a bijective, conformal map from the extended 

complex plane onto itself

Extended complex plane

Mobius
Transformation

Bijective
Conformal

A3

A1

A2

B3

B2

B1



Möbius Transformations IV

Since every genus zero surface can be mapped 

conformally onto the extended complex plane 

(Riemann sphere), …

Extended complex plane

Uniformization

Surface z

Riemann
Sphere

Stereographic
Projection



Möbius Transformations V

Any three point correspondences define a bijective, 

conformal map between genus zero surfaces

Mobius
Transformation

Extended complex plane

Surface
B 

A1

A3

A2

A3

A1

A2

B3B1

B2

B3
B1

B2

Bijective
Conformal

Bijective
Conformal

Bijective
Conformal

Surface
A 

Uniformization

Uniformization-1



Möbius Transformations VI

We can search for the “lowest distortion” bijective, 

conformal map between genus zero surfaces using 

algorithms that sample triplets of 

correspondences(e.g., RANSAC, Hough transform, 

etc.)

Polynomial-time algorithm 
for non-rigid surface mapping



Surface Mapping Algorithm

Example: RANSAC algorithm
For i = 1 to ~N3

Sample three points (A1,A2,A3) on surface A

Sample three points (B1,B2,B3) on surface B

Compute conformal map M: (A1,A2,A3)→(B1,B2,B3)

Remember M if distortion is smallest
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Example: RANSAC algorithm
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Surface Mapping Algorithm

RANSAC algorithm properties:
 Non-rigid

 Bijective

 Smooth

 Shape preserving

 Automatic

 Efficient computation

 Provides metric

 Semantic alignment?



Experimental Results

Data:
 51 pairs of meshes representing animals from 

TOSCA and SHREC Watertight data sets

Methodology:
 Predict surface maps

 Compare to ground truth 

semantic correspondences



Experimental Results

Evaluation:

1. For every point with 

a ground truth 

correspondence,

measure geodesic 

distance between 

predicted correspondence 

and ground truth 

correspondence

2. Plot fraction of points within 

geodesic error threshold

Predicted

Error



Experimental Results

Results:
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Distortion of m1 Distortion of m2 Distortion of m3

Blended Maps

For significantly different surfaces, no single 

conformal map provides low distortion everywhere



Blended Maps

Idea: blend conformal maps with smooth weights

Blending Weights 
for m1, m2, and m3

Distortion of the 
Blended Map



Generate 
consistent 
set of maps

Find 
blending 
weights

Blend 
maps

Computing Blended Maps



Set of 
candidate 
maps

…

Computing Blended Maps

1. Generate candidate maps

by enumerating triplets of 

feature correspondences



Set of 
candidate 
maps

…

Computing Blended Maps

2. Select consistent set of 

low-distortion candidate maps



Computing Blended Maps

2a. Define a matrix B where every entry (i,j) 

indicates the distortion of mi and mj and their 

pairwise similarity Si,j

Candidate Maps

C
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M
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Computing Blended Maps

2b. Find block of consistent, low-distortion maps   

using top eigenvector(s) of B
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Candidate Map

Computing Blended Maps

3. Compute blending weight ci(p) for every map mi

at every point p based on distortion of mi at p

Blending Weight



Computing Blended Maps

4. Define image p’ of every point p as the 

weighted geodesic centroid of mi(p)

Candidate Maps

Blended Map

centroid

p

p

p’

mi(p)



Computing Blended Maps



Experimental Results
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Application

Automatically quantify the geometric similarity 

of anatomical surfaces

[Boyer, Lipman, St. Clair, Puente, Patel, Funkhouser, Jernvall, and Daubechies, 2011]

Homo sapiens

Pan troglodytes

Pongo pygmaeus

Microcebus
Tarsius

Tupaia

Distal Radius Mandibular Molar



Application

Traditional Procrustes distance:

X = { Xi } Y = { Yi }

Human
Specified

Landmarks



Application

New continuous Procrustes distance:

A B

x M(x)



Application

Embedding based on new distance



Species Groups of Galaga Genus

Application

Clustering based on new distance



Application

Classification based on nearest-neighbors

Mandibular

Molar
# Groups # Objects

New

Distance

Human

Landmarks

Genus 24 99 90.9% 91.9%

Family 17 106 92.5% 94.3%

Order 5 116 94.8% 95.7%

First

Metatarsal

#

Groups
# Objects

New

Distance

Human1

Landmarks

Human2

Landmarks

Genus 13 59 79.9% 76.3% 88.1%

Family 9 61 91.8% 83.6% 93.4%

Superfamily 2 61 100% 100% 100%

Distal

Radius

#

Groups
# Objects

New

Distance

Human

Landmarks

Genus 4 45 84.4% 77.7%



Application

Propagating correspondences
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