Spectral Meshes

COS 526, Fall 2016
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Motivation

Want frequency domain representation for
3D meshes
o Smoothing
o Compression
Progressive transmission
Watermarking
o efc.
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Frequencies Iin a mesh

This lecture = spectral meshes
o Like Fourier

[Hoppe]



Fourier Transform
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Frequency domain




Filtering




Filtering

Filtering
Convolution

_ Inverse
Fourier :
Fourier

Transform Geometric space Transform




Filtering on a mesh

Filtering
[Taubin 95]




Freguencies in a function

Fourier analysis
o 2D bases for 2D signals (images)
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- How about 3D shapes?

Problem: 2D surfaces embedded in 3D
are not (height) functions
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Height function, regularly General 3D shapes
sampled above a 2D domain
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- Basis functions for 3D meshes
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Need extension of the Fourier basis to a general
(irreqgular) mesh
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Basis functions for 3D meshes

We need a collection of
o First basis functions will be very smooth, slowly-varying
o Last basis functions will be high-frequency, oscillating

We will represent our shape (mesh geometry) as a
of the basis functions
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Harmonics

sin(kx) are the stationary vibrating modes = harmonics of a string



Harmonics

Harmonics NN

Line W/\/V\/

Stationary vibrating modes



Spherical Harmonics

O Harmonics : :1 o
=380
Sphere 5?0@0

Stationary vibrating modes



Manifold Harmonics

Harmonics r>

Stationary vibrating modes



Harmonics

Wave equation:

vt
T 02y/ox2 =y 9%y m X

T: stiffness y: mass

Stationary modes:
y(x,t) = y(x)sin(wt)
2y[0x? = -uw/Ty

eigenfunctions of 92/0x?



Harmonics

Harmonics are eigenfunctions of 92/0x?
On a mesh, d%/0x? is the Laplacian A

Frequency domain basis functions for 3D meshes
are eigenfunctions of the Laplacian
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The Mesh Laplacian operator
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L(v,)=dv,— ) vj:di[vi—di > vj)

JeN (i) i JeN(i)

Measures the local smoothness at each mesh
vertex



Laplacian operator in matrix form

d -1 0 -1 0 v, o,

0 d, -1 -1 v, o,
d, :

0 -1 -1 -1 d., Vi, Opt

-1 -1 -1 d, )L v )

L matrix



TR

Spectral bases
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L is a symmetric nxn matrix

Eigenfunctions of L computed with spectral analysis
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Basis vectors Frequencies,
sorted in ascending
order
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- The spectral basis

First functions are smooth and slow, last oscillate a lot

L)

chain connectivity

Epoint DCT: rows 1 to 4 Epoint DCT: ows 510 8

2nd basis 10t basis 100t basis
function function function

spectral basis of L =
the DCT basis




~ The spectral basis

First functions are smooth and slow, last oscillate a lot
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Spectral mesh representation

Coordinates represented in spectral basis:

X,Y,Z eR".
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Spectral mesh representation

Coordinates represented in spectral basis:
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- The spectral basis

Most shape information is in low-frequency
components
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[Karni and Gotsman 00]



Applications

Smoothing

Compression
Progressive transmission
Watermarking

etc.



Mesh smoothing

Aim to remove high frequency details

[Taubin 95]



Spectral mesh smoothing

Drop the high-frequency components
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High-frequency components!




Mesh compression

Aim to represent surface with fewer bits

36 bits/vertex 1.4 bits/vertex



Mesh compression

Most of mesh data is in geometry

o The connectivity (the graph) can be very efficiently
encoded

» About 2 bits per vertex only
o The geometry (x,y,z) Is heavy!
» When stored naively, at least 12 bits per coordinate
are needed, i.e. 36 bits per vertex



Mesh compression

What happens if quantize xyz coordinates?




Mesh compression

Quantization of the Cartesian coordinates
Introduces high-frequency errors to the surface.

High-frequency errors alter the visual appearance of
the surface — affect normals and lighting.



Mesh compression

Transform the Cartesian coordinates to another
space where quantization error will have low
frequency In the regular Cartesian space

Quantize the transformed coordinates.

Low-frequency errors are less apparent to a human
observer.



Spectral mesh compression

The encoding side:
o Compute the spectral bases from mesh connectivity

o Represent the shape geometry in the spectral basis and decide how
many coeffs. to leave (K)

o Store the connectivity and the K non-zero coefficients

The decoding side:
o Compute the first K spectral bases from the connectivity
o Combine them using the K received coefficients and get the shape



Spectral mesh compression

Low-frequency errors are hard to see




Progressive transmission
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First transmit the lower-eigenvalue coefficients (low
frequency components), then gradually add finer details by
transmitting more coefficients.

[Karni and Gotsman 00]



Mesh watermarking

Embed a bitstring in the low-frequency coefficients
o Low-frequency changes are hard to notice

(e) Original (f) Watermarked. (g) Additive random noise.  (h) Mesh smoothing.

[Ohbuchi et al. 2003]



- Caveat

e W

Performing spectral decomposition of a large matrix (n>1000)
is prohibitively expensive (O(n%))
o Today’s meshes come with 50,000 and more vertices
o We don’t want the decompressor to work forever!

Possible solutions:
o Simplify mesh
o Work on small blocks (like JPEG)




