Some Mesh Surface Properties

Thomas Funkhouser Princeton University COS 526, Fall 2016

Curvature

Curvature

Curvature

Curvature κ of a curve is reciprocal of radius of circle that best approximates it

Defined at a point ${\bf p}$ in a direction ${\bf w}$

Line has $\kappa = 0$

The curvature at a point varies between some minimum and maximum – these are the principal curvatures κ_1 and κ_2

They occur in the *principal directions* d_1 and d_2 which are perpendicular to each other

Principal Curvatures

$\underbrace{\text{Minimum Curvature}}_{\kappa_1}$

Maximum Curvature κ_2

Gaussian and Mean Curvature

Planar points:

- Zero Gaussian curvature and zero mean curvature
- Tangent plane intersects surface at infinity points

Parabolic points:

- Zero Gaussian curvature, non-zero mean curvature
- Tangent plane intersects surface along 1 curves

What Does Curvature Tell Us?

Elliptical points:

- Positive Gaussian curvature
- Convex/concave depending on sign of mean curvature
- Tangent plane intersects surface at 1 point

Hyperbolic points:

- Negative Gaussian curvature
- Tangent plane intersects surface along 2 curves

Mesh Saliency:

- Motivated by models of perceptual salience
- Difference between mean curvature blurred with σ and blurred with 2σ

Tensor voting

- Extract points {q_i} in neighborhood
- Compute covariance matrix M
- Analyze eigenvalues and eigenvectors of M (via SVD)
- Eigenvectors are Principal Axes

$$\mathbf{M} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} q_i^{x} q_i^{x} & q_i^{x} q_i^{y} & q_i^{x} q_i^{z} \\ q_i^{y} q_i^{x} & q_i^{y} q_i^{y} & q_i^{y} q_i^{z} \\ q_i^{z} q_i^{x} & q_i^{z} q_i^{y} & q_i^{z} q_i^{z} \end{bmatrix}$$

Covariance Matrix

$$\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{U}^{t}$$
$$\mathbf{S} = \begin{bmatrix} \lambda_{a} & 0 & 0 \\ 0 & \lambda_{b} & 0 \\ 0 & 0 & \lambda_{c} \end{bmatrix} \quad \mathbf{U} = \begin{bmatrix} A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z} \end{bmatrix}$$

Eigenvalues & Eigenvectors

Tensor voting

- Extract points {q_i} in neighborhood
- Compute covariance matrix M
- Analyze eigenvalues and eigenvectors of M (via SVD)

$$\mathbf{M} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} q_i^{x} q_i^{x} & q_i^{x} q_i^{y} & q_i^{x} q_i^{z} \\ q_i^{y} q_i^{x} & q_i^{y} q_i^{y} & q_i^{y} q_i^{z} \\ q_i^{z} q_i^{x} & q_i^{z} q_i^{y} & q_i^{z} q_i^{z} \end{bmatrix}$$

Covariance Matrix

$$\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{U}^{t}$$
$$\mathbf{S} = \begin{bmatrix} \lambda_{a} & 0 & 0 \\ 0 & \lambda_{b} & 0 \\ 0 & 0 & \lambda_{c} \end{bmatrix} \quad \mathbf{U} = \begin{bmatrix} A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z} \end{bmatrix}$$

Eigenvalues & Eigenvectors

Eigenvectors are "Principal Axes of Inertia"

Eigenvalues are variances of the point distribution in those directions

Provides estimate of normal direction

• Eigenvector (principal axis) associated with smallest eigenvalue

What Does PCA Tell Us?

Helps us construct a local coordinate frame for every point

- Map \hat{e}_1 to X axis
- Map \hat{e}_2 to Y axis
- Map \hat{e}_3 to Z axis

What Does PCA Tell Us?

Helps differentiate nearly plane-like, from stick-like, from sphere-like, etc.

What Does PCA Tell Us?

Helps differentiate nearly plane-like, from stick-like, from sphere-like, etc.

 $\lambda_2 / (\lambda_1 + \lambda_2 + \lambda_3)$

Statistics of Distances

Statistics of Distances

Distances can be along surface (geodesic) or as a crow flies (Euclidean)

Geodesic distance to point

Geodesic vs. Euclidean distance

Statistics of Distances

Average geodesic distance to other points on surface

What Do Statistics of Distance Tell Us?

Histograms of geodesic distances

- Small distances relate to curvature
- Long distances relate to centeredness

Shape Diameter Function

Shape Diameter Function

Median distance along sampling of rays through interior

Shape Diameter Function

Distinguish between thin and thick parts in a model Sharp changes often correlate with part boundaries

Mesh Surface Properties in Assignment 2