

COS 526, Fall 2016 Princeton University

- How do we ...
 - Represent 3D objects in a computer?
 - Acquire computer representations of 3D objects?
 - Manipulate computer representations of 3D objects?

What can we do with a 3D object representation?

- Edit
- Transform
- Smooth
- Render
- Animate
- Morph
- Compress
- Transmit
- Analyze
- etc.

Digital Michelangelo

Thouis "Ray" Jones

Pirates of the Caribbean

Sand et al.

Desirable properties depend on intended use

- Easy to acquire
- Accurate
- Concise
- Intuitive editing
- Efficient editing
- Efficient display
- Efficient intersections
- Guaranteed validity
- Guaranteed smoothness
- etc.

How can this object be represented in a computer?

H&B Figure 9.9

H&B Figure 10.46

Stanford Graphics Laboratory

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Equivalence of Representations

- Thesis:
 - Each representation has enough expressive power to model the shape of any geometric object
 - It is possible to perform all geometric operations with any fundamental representation
- Analogous to Turing-equivalence
 - Computers and programming languages are Turing-equivalent, but each has its benefits...

Why Different Representations?

Efficiency for different tasks

- Acquisition
- Rendering
- Manipulation
- Animation
- Analysis

Data structures determine algorithms

Why Different Representations?

- Efficiency
 - Representational complexity (e.g. volume vs. surface)
 - Computational complexity (e.g. O(n²) vs O(n³))
 - Space/time trade-offs (e.g. z-buffer)
 - Numerical accuracy/stability (e.g. degree of polynomial)
- Simplicity
 - Ease of acquisition
 - Hardware acceleration
 - Software creation and maintenance
- Usability
 - Designer interface vs. computational engine

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Range Image

Set of 3D points mapping to pixels of depth image Can be acquired from range scanner

Cyberware

Stanford

Range Image

Tesselation

Range Surface

Brian Curless SIGGRAPH 99 Course #4 Notes

Point Cloud

Unstructured set of 3D point samples

• Acquired from range finder, computer vision, etc

Polhemus

Microscribe-3D

Hoppe

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 Scope graph
 - Scene graph
 - Application specific

Polygonal Mesh

Connected set of polygons (usually triangles)

Stanford Graphics Laboratory

Subdivision Surface

Coarse mesh & subdivision rule

• Smooth surface is limit of sequence of refinements

Zorin & Schroeder SIGGRAPH 99 Course Notes

Parametric Surface

Tensor-product spline patches

- Each patch is parametric function
- Careful constraints to maintain continuity

FvDFH Figure 11.44

Implicit Surface

Set of all points satisfying: F(x,y,z) = 0

Polygonal Model

Implicit Model

Bill Lorensen SIGGRAPH 99 Course #4 Notes

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Stanford Graphics Laboratory

Uniform volumetric grid of samples:

- Occupancy (object vs. empty space)
- Density
- Color
- Other function (speed, temperature, etc.)
- Often acquired via simulation or from CAT, MRI, etc.

Voxel grid

BSP Tree

Hierarchical Binary Space Partition with solid/empty cells labeled

Constructed from polygonal representations

Binary Tree

Constructive Solid Geometry: set operations (union, difference, intersection) applied to simple shapes

FvDFH Figure 12.27

H&B Figure 9.9

Solid swept by curve along trajectory

Removal Path

Sweep Model

Bill Lorensen SIGGRAPH 99 Course #4 Notes

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Scene Graph

Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com

Application Specific

Apo A-1 (Theoretical Biophysics Group, University of Illinois at Urbana-Champaign)

Architectural Floorplan

(CS Building, Princeton University)

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Equivalence of Representations

- Thesis:
 - Each representation has enough expressive power to model the shape of any geometric object
 - It is possible to perform all geometric operations with any fundamental representation
- Analogous to Turing-equivalence
 - Computers and programming languages are Turing-equivalent, but each has its benefits...

Point-Based Representations

(with an emphasis on RGB-D scans)

Points

- Range image
- Point cloud

Surfaces

- Polygonal mesh
- Subdivision
- Parametric
- Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Point Clouds

Represent surface by a set of points

- Each point is represented by (x, y, z) [(r, g, b)]
- No connectivity between points

Point Clouds

Properties?

- Easy to acquire
- Accurate
- Concise
- Intuitive editing
- Efficient editing
- Efficient display
- Efficient intersections
- Guaranteed validity
- Guaranteed smoothness
- etc.

Point Clouds

Properties?

- Easy to acquire
- Accurate
- Concise
- Intuitive editing
- Efficient editing
- Efficient display
- Efficient intersections
- Guaranteed validity
- Guaranteed smoothness
- etc.

Point Cloud Acquisition

Passive

Structure from motion

Active

- Touch probes
- Reflectance scanning
 - Time of flight
 - Triangulation
 - Laser
 - Structured light

Structure from Motion

Solve for 3D structure of pixel correspondences in multiple images

Structure from Motion

Advantages:

- Has been demonstrated for large photo collections
- Passive
- Disadvantages:
 - Only works for points where pixel correspondences can be found

Touch Probes

Capture points on object with tracked tip of probe

- Physical contact with the object
- Manual or computer-guided

- Advantages:
 - Can be very precise
 - Can scan any solid surface

Disadvantages:

- Slow, small scale
- Can't use on fragile objects

uvaniayes.

Time of Flight Laser Scanning

Measures the time it takes the laser beam to hit the object and come back e.g., LIDAR

Time of Flight Laser Scanning

Advantages

 Accommodates large range – up to several miles (suitable for buildings, rocks)

Disadvantages

• Lower accuracy

System includes calibrated laser beam and camera Laser dot is photographed

The location of the dot in the image allows triangulation: tells distance to the object

System includes calibrated laser beam and camera Laser dot is photographed

The location of the dot in the image allows triangulation: tells distance to the object

d

Advantages

Very precise (tens of microns)

Disadvantages

- Small distances (meters)
- Inaccessible regions

Color-Coded Stripe Triangulation

Color-Coded Stripe Triangulation

Assign each stripe a unique illumination code over time

Space

[Posdamer 82]

3D Reconstruction using Structured Light [Inokuchi 1984]

Structured Light Patterns

Spatial encoding strategies [Chen et al. 2007]

Pseudorandom and M-arrays [Griffin 1992]

J. Salvi, J. Pagès, and J. Batlle. Pattern Codification Strategies in Structured Light Systems

"Single-shot" patterns (N-arrays, grids, random, etc.)

De Bruijn sequences [Zhang et al. 2002]

Phase-shifting [Zhang et al. 2004]

Structured Light Scanning: Kinect

Structured Light Scanning: Kinect

Depth Map

RGB Image

Structured Light Scanning: Kinect

How the Kinect Depth Sensor Works in 2 Minutes

http://www.youtube.com/watch?v=uq9SEJxZiUg

Structured Light Scanning

Advantages:

• Very fast – 2D pattern at once

Disadvantages:

- Prone to noise
- Indoor only

RGB-D Scanning of Static Indoor Environments

• Example RGB-D scans

Motivation: scene modeling and visualization

[Pomerlau et al., 2013]

- Applications:
 - Home remodeling
 - Online tourism
 - Virtual worlds
 - Real estate
 - Simulation
 - Forensics
 - Robotics
 - Games
 - etc.

Robot Pre-Scanning

Robot in Service

Annotation in the Cloud

3D Map & Object Library

[Song et al., 2015]

- Challenges:
 - Acquisition (scanning process)
 - Registration (camera pose estimation)
 - Surface reconstruction (surface estimation)
 - Surface completion (hole filling)
 - Surface coloring (texture synthesis)
 - Segmentation (object decomposition)
 - Labeling (semantic annotation)
 - Modeling (CAD model extraction)
 - etc.

Acquisition of RGB-D Scans

Tripod (Matterport)

Push Cart (NavVis)

Robot (Princetion Vision Group)

Hand-held (Structure IO, Intel)

Registration of RGB-D Scans

- Goals:
 - Commodity cameras
 - Long RGB-D sequences
 - Large environments
 - Globally consistent
 - Metric accuracy
 - Fast to compute
 - Automatic

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

Input Image

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

SIFT Keypoints

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

SIFT Descriptors

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

SIFT Descriptors

VLFeat

RGB-D Registration Techniques

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

SIFT Keypoint Matches

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

Model previous scans with TSDF [Newcombe et al., 2011]

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

Align new scans to TSDF model [Newcombe et al., 2011]

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

KinectFusion [Newcombe et al., 2011]

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

- Real-time:
 - Feature tracking
 Iterated closest points
 Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

Loop Closure using BoW

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

SUN3DSfM [Xiao et al., 2013]

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

• Off-line:

ElasticFusion [Whelan et al., 2015]

- Pose-graph optimization
- Robust reconstruction
- Global ICP

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - Global ICP

Intel Research Lab in Seattle

• Real-time:

• Off-line:

Global ICP

- Feature tracking
- Iterated closest points
- Volumetric fusion
- Loop closure search

 $E(\mathbb{T},\mathbb{L}) = \sum_{i} f(\mathbf{T}_{i},\mathbf{T}_{i+1},\mathbf{R}_{i})$ + $\sum_{i,j} l_{ij} f(\mathbf{T}_i, \mathbf{T}_j, \mathbf{T}_{ij})$ + $\mu \sum_{i=i} \Psi(l_{ij}).$

Robust Reconstruction [Choi et al., 2015]

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - ➢ Global ICP

Iterative Closest Points [Besl, 1992]

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - ➢ Global ICP

Iterative Closest Points [Besl, 1992]

- Real-time:
 - Feature tracking
 - Iterated closest points
 - Volumetric fusion
 - Loop closure search

- Off-line:
 - Pose-graph optimization
 - Robust reconstruction
 - ➢ Global ICP

Iterative Closest Points [Besl, 1992]

Example RGB-D Registration Pipeli

Field Trip! Experience scanning 3D environments

