
princeton univ. F’16 cos 521: Advanced Algorithm Design

Lecture 9: High Dimensional Geometry, Curse of
Dimensionality, Dimension Reduction

Lecturer: Pravesh Kothari Scribe:Sanjeev Arora

High-dimensional vectors are ubiquitous in applications (gene expression data, set of
movies watched by Netflix customer, etc.) and this lecture seeks to introduce high dimen-
sional geometry. We encounter the so-called curse of dimensionality which refers to the fact
that algorithms are simply harder to design in high dimensions and often have a running
time exponential in the dimension. We also encounter the blessings of dimensionality, which
allows us to reason about higher dimensional geometry using tools like Chernoff bounds.
We also show the possibility of dimension reduction — it is sometimes possible to reduce
the dimension of a dataset, for some purposes.

Notation: For a vector x ∈ <d its `2-norm is |x|2 = (
∑

i x
2
i )

1/2 and the `1-norm is
|x|1 =

∑
i |xi|. For any two vectors x, y their Euclidean distance refers to |x− y|2 and

Manhattan distance refers to |x− y|1.
High dimensional geometry is inherently different from low-dimensional geometry.

Example 1 Consider how many almost orthogonal unit vectors we can have in space, such
that all pairwise angles lie between 88 degrees and 92 degrees.

In <2 the answer is 2. In <3 it is 3. (Prove these to yourself.)
In <d the answer is exp(cd) where c > 0 is some constant.

R2# R3#
Rd#

Figure 1: Number of almost-orthogonal vectors in <2,<3,<d

Example 2 Another example is the ratio of the the volume of the unit sphere to its cir-
cumscribing cube (i.e. cube of side 2). In <2 it is π/4 or about 0.78. In <3 it is π/6 or
about 0.52. In d dimensions it is d−cd for some constant c > 0.

Let’s start with useful generalizations of some geometric objects to higher dimensional
geometry:

1



2

• The n-cube in <n: {(x1...xn) : 0 ≤ xi ≤ 1}. To visualize this in <4, think of yourself
as looking at one of the faces, say x1 = 1. This is a cube in <3 and if you were
able to look in the fourth dimension you would see a parallel cube at x1 = 0. The
visualization in <n is similar.

The volume of the n-cube is 1.

• The unit n-ball in <d: Bd := {(x1...xd) :
∑
x2i ≤ 1}. Again, to visualize the ball in

<4, imagine you have sliced through it with a hyperplane, say x1 = 1/2. This slice is
a ball in <3 of radius

√
1− 1/22 =

√
3/2. Every parallel slice also gives a ball.

The volume of Bd is πd/2

(d/2)! (assume d is even if the previous expression bothers you),

which is 1
dΘ(d) .

• In <2, if we slice the unit ball (i.e., disk) with a line at distance 1/2 from the center
then a significant fraction of the ball’s volume lies on each side. In <d if we do the
same with a hyperplane, then the radius of the d− 1 dimensional ball is

√
3/2, and so

the volume on the other side is negligible. In fact a constant fraction of the volume
lies within a slice at distance 1/

√
d from the center, and for any c > 1, a (1 − 1/c)-

fraction of the volume of the d-ball lies in a strip of width O(
√

log c
d ) around the

center. This fact is closely related to Chernoff bounds, and a related phenomenon
called concentration of measure. (Measure is the mathematical name for volume.)

• A good approximation to picking a random point on the surface of Bn is by choosing
random xi ∈ {−1, 1} independently for i = 1..n and normalizing to get 1√

n
(x1, ..., xn).

An exact way to pick a random point on the surface of Bn is to choose xi from
the standard normal distribution for i = 1..n, and to normalize: 1

l (x1, ..., xn), where

l = (
∑

i x
2
i )

1/2.

0.1 Number of almost-orthogonal vectors

Now we show there are exp(d) vectors in <d that are almost-orthogonal. Recall that the
angle between two vectors x, y is given by cos(θ) = 〈x, y〉/ |x|2 |y|2.

Lemma 1
Suppose a is a unit vector in <n. Let x = (x1, ..., xn) ∈ Rn be chosen from the surface
of Bn by choosing each coordinate at random from {1,−1} and normalizing by factor 1√

n
.

Denote by X the random variable a · x =
∑
aixi. Then:

Pr(|X| > t) < e−nt
2

Proof: We have:
µ = E(X) = E(

∑
aixi) = 0

σ2 = E[(
∑

aixi)
2] = E[

∑
aiajxixj ] =

∑
aiajE[xixj ] =

∑ a2i
n

=
1

n
.



3

Using the Chernoff bound, we see that,

Pr(|X| > t) < e−(
t
σ
)2 = e−nt

2
.

2

Corollary 2
If x, y are chosen at random from {−1, 1}n, and the angle between them is θx,y then

Pr

[
|cos(θx,y)| >

√
log c

n

]
<

1

c
.

Hence by if we pick say
√
c/2 random vectors in {−1, 1}n, the union bound says that

the chance that they all make a pairwise angle with cosine less than
√

log c
n is less than 1/2.

Hence we can make c = exp(0.01n) and still have the vectors be almost-orthogonal (i.e.
cosine is a very small constant).

0.2 Curse of dimensionality

Curse of dimensionality —a catchy term due to Richard Bellman, who also invented the
term dynamic programming—refers to the fact that problems can get a lot harder to solve
on high-dimensional instances. This term can mean many things.

The simplest is NP-hardness. Some problems can be easy to solve for dimension 2 and
become NP-hard as d is allowed to grow.

Another is sample complexity. Many simple machine learning algorithms are based upon
nearest neighbor ideas: maintain a database of points S you know how to solve, and when
presented with a new point y, use the solution/answer for the point in S that is closest to
y. This runs into problems in <d because, as we saw, you need more than exp(d) points
in S before a random y is guaranteed to have a reasonably close point in S. Thus for any
reasonable d, the data is spread too thinly. In practice people try to reduce dimension in
some way before applying a nearest-neighbor method. A different variant of this curse is
when d is so large —e.g. a million—that even d2 samples are too many to hope for. Then
one has to look for really sample-efficient algorithms.

Another interpretation for curse of dimensionality is that algorithms for simple prob-
lems — —nearest neighbor, minimum spanning tree, point location etc.— become more
inefficient, though they stay polynomial-time. For example, minimum spanning tree for n
points in d dimensions can be solved in time nearly linear in n for d = 2, but for larger d it
has to be n2 or depend upon exp(d).

I hereby coin a new term: Blessing of dimensionality. This refers to the fact that many
phenomena become much clearer and easier to think about in high dimensions because one
can use simple rules of thumb (e.g., Chernoff bounds, measure concentration) which don’t
hold in low dimensions.



4

0.3 Dimension Reduction

Now we describe a central result of high-dimensional geometry (at least when distances are
measured in the `2 norm). Problem: Given n points z1, z2, ..., zn in <n, we would like to
find n points u1, u2, ..., un in <m where m is of low dimension (compared to n) and the
metric restricted to the points is almost preserved, namely:

‖zi − zj‖2 ≤ ‖ui − uj‖2 ≤ (1 + ε)‖zj − zj‖2 ∀i, j. (1)

The following main result is by Johnson & Lindenstrauss :

Theorem 3
In order to ensure (1), m = O( logn

ε2
) suffices, and in fact the mapping can be a linear

mapping.

The following ideas do not work to prove this theorem (as we discussed in class): (a)
take a random sample of m coordinates out of n. (b) Partition the n coordinates into m
subsets of size about n/m and add up the values in each subset to get a new coordinate.

Proof: Choose m vectors x1, ..., xm ∈ <n at random by choosing each coordinate randomly

from {
√

1+ε
m ,−

√
1+ε
m }. Then consider the mapping from <n to <m given by

z −→ (z · x1, z · x2, . . . , z · xm).

In other words ui = (zi ·x1, zi ·x2, ..., zi ·xm) for i = 1, . . . , k. (Alternatively, we can think of
the mapping as a random linear transformation u = A · z where A is a matrix with random

entries in {
√

1+ε
m ,−

√
1+ε
m }.) We want to show that with positive probability, u1, ..., uk has

the desired properties. This would mean that there exists at least one choice of u1, ..., uk

satisfying inequality (1). To show this, first we write the expression ‖ui − uj‖ explicitly:

‖ui − uj‖2 =

m∑
k=1

(
n∑
l=1

(zil − z
j
l )x

k
l

)2

.

Denote by z the vector zi − zj , and by u the vector ui − uj . So we get:

‖u‖2 = ‖ui − uj‖2 =
m∑
k=1

(
n∑
l=1

zlx
k
l

)2

.

Let Xk be the random variable (
∑n

l=1 zlx
k
l )

2. Its expectation is µ = 1+ε
m ‖z‖

2 (can be seen
similarly to the proof of Lemma 1). Therefore, the expectation of ‖u‖2 is (1 + ε)‖z‖2. If we
show that ‖u‖2 is concentrated enough around its mean, then it would prove the theorem.
More formally, this is done in the following Chernoff bound lemma. 2

Lemma 4
There exist constants c1 > 0 and c2 > 0 such that:

1. Pr[‖u‖2 > (1 + β)µ] < e−c1β
2m



5

2. Pr[‖u‖2 < (1− β)µ] < e−c2β
2m

Therefore there is a constant c such that the probability of a ”bad” case is bounded by:

Pr[(‖u‖2 > (1 + β)µ) ∨ (‖u‖2 < (1− β)µ)] < e−cβ
2m

Now, we have
(
n
2

)
random variables of the type ‖ui − uj‖2. Choose β = ε

2 . Using the
union bound, we get that the probability that any of these random variables is not within
(1± ε

2) of their expected value is bounded by(
n

2

)
e−c

ε2

4
m.

So if we choose m > 8(logn+log c)
ε2

, we get that with positive probability, all the variables
are close to their expectation within factor (1± ε

2). This means that for all i,j:

(1− ε

2
)(1 + ε)‖zi − zj‖2 ≤ ‖ui − uj‖2 ≤ (1 +

ε

2
)(1 + ε)‖zi − zj‖2

Therefore,
‖zi − zj‖2 ≤ ‖ui − uj‖2 ≤ (1 + ε)2‖zi − zj‖2,

and taking square root:

‖zi − zj‖ ≤ ‖ui − uj‖ ≤ (1 + ε)‖zi − zj‖,

as required.

More Questions about Dimension Reduction. The JL lemma fits within a long
history of study of metric spaces in mathematics. Here are some other questions that have
been studied.

Question 1: The above dimension reduction preserves (approximately) `2-distances. Can
we do dimension reduction that preserves `1 distance? This was an open problem for many
years until Brinkman and Charikar (of Princeton) showed in 2003 that no such dimension
reduction is possible. They exhibit a cleverly chosen set of n points in <n such that their
interpoint distances measured in `1 norm cannot be captured using n points in <m when
m is much smaller than n. This rules out a very general class of mappings, not just linear
mappings used in the JL lemma.

Question: Is the JL theorem tight, or can we reduce the dimension even further below
O(log n/ε2)? Alon has shown that this is essentially tight.

Finally, we note that there is a now-extensive literature on more efficient techniques for
JL-style dimension reduction, with a major role played by a 2006 paper of Ailon and Chazelle
(also of Princeton). Do a google search for “Fast Johnson Lindenstrauss Transforms.”These
are most effective when the points are sparse vectors (i.e., have many zero coordinates) in
which case the running time can be much lower.



6

0.3.1 Locality preserving hashing

Suppose we wish to hash high-dimensional vectors so that nearby vectors tend to hash
into the same bucket. To do this we can do a random projection into say the cube in 5
dimensions. We discretise the cube into smaller cubes of size ε. Then there are 1/ε5 smaller
cubes; these can be the buckets.

This is simplistic; more complicated schemes have been constructed. Things get even
more interesting when we are interested in `1-distance.

0.3.2 Dimension reduction for efficiently learning a linear classifier

Figure 2: Margin of a linear classifier with respect to some labeled points

Suppose we are given a set of m data points in <d, each labeled with 0 or 1. For example
the data points may represent emails (represented by the vector giving frequencies of various
words in them) and the label indicates whether or not the user labeled them as spam. We
are trying to learn the rule (or “classifier”) that separates the 1’s from 0’s.

The simplest classifier is a halfspace. Finding whether there exists a halfspace
∑

i aixi ≥
b that separates the 0’s from 1’s is solvable via Linear Programming. This LP has n + 1
variables and m constraints.

However, there is no guarantee in general that the halfspace that separates the training
data will generalize to new examples? ML theory suggests conditions under which the
classifier does generalize, and the simplest is margin. Suppose the data points are unit
vectors. We say the halfspace has margin ε if every datapoint has distance at least ε to the
halfspace.

In the next homework you will show that if such a margin exists then dimension reduction
to O(log n/ε2) dimensions at most halves the margin. Hence the LP to find it only has
O(log n/ε2) variables instead of n+ 1.

Bibliography:

1. Noga Alon. Problems and results in extremal combinatorics I. Discrete Mathematics,
273(1- 3):3153, 2003.



7

2. W. Brinkman and M. Charikar. On the impossibility of Dimension Reduction in `1.
IEEE FOCS 2003.

3. N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In Proceedings of the 38th ACM Symposium on Theory of
Computing (STOC), pages 557563, 2006.


