PRINCETON UNIV. F’16 c0Os 521: ADVANCED ALGORITHM DESIGN
Lecture 19: Tensor Methods
Lecturer: Pravesh Kothari Scribe: Pravesh Kothari

This lecture introduces tensors, a higher dimensional analog of matrices and their use
in finding and intepreting patterns in data. The notes are based on the Rong Ge’s excellent
blog post on the topic and a similar lecture taught by Tim Roughgarden and Greg Valiant
at Stanford (see references).

In earlier classes, we saw that the SVD gives us a method to write any rank r matrix

M € R™*™ ag
M = Z )\iuiv;—,
i<r
where u; € R™, 1 < i <randv; € R", <1i < r are mutually orthogonal sets of unit vectors.
This can be rewritten as M = UV " where U is the matrix with columns u;,us, ..., u, and
V', the matrix with columns vy, va, ..., v,.

However, such a representation of M is far from unique: for any orthogonal matrix
CeR™, M= (U-C)(CTVT) gives a different decomposition of M. This is problematic
in situations where we want to assign “meaning” to the rank 1 terms in a decomposition
of a matrix. We start with the motivating example of a psychological study to measure
intelligence proposed by Charles Spearman (borrowed from Rong Ge’s excellent blog post
article on the Off Convex blog, see references for a link) which illustrates such a situation.

We will see how higher dimensional tensors naturally come to our rescue here. Although
most natural analogs of matrix problems are NP-hard in general, we will be able to give
efficient algorithms in fairly general settings for the tensor decomposition problem, the
analog to the matrix decomposition problem discussed above.

0.1 The Spearman Study

See Rong Ge’s blogpost (linked in the references) for details of the Spearman study discussed
in the class.

0.2 Formal Definitions

We now formally define tensors. A k tensor of dimensions is nq X ng X - - - X ng dimensional
array of numbers. A 2 tensor is just a ny X ny dimensional matrix.

How should we define a rank 1 tensor? Any m; X ne rank 1 matrix can be written as
wv! for u € R™ and v € R™. While we have seen and used such a representation of a
rank 1 matrix many times in this class, we now formally define an operation that takes two
vectors © € R™ and v € R™ and produces a Nj x ny matrix uv' as the outer product of
u and v. Recall that the inner product of u and v (of matching dimensions) produces a
scalar instead.

We now generalize the outer product to multiple vectors to define a rank 1 tensor.
Specifically,



DEFINITION 1 (OUTER PRODUCT) for uy,ug,...,u; in R™ R™ ... R"™ respectively, the
outer product u; @uo @ - - - Qug of uy, uo, ..., ur is defined as the k-tensor with i1,19,. ..,

entry given by [T,y u;(i;).

We define a rank 1 k tensor as simply an outer product of k vectors.

Next, we must define a rank r tensor. For matrices M, observe that one can define the
rank as the minimum integer r such that there are r pairs of vectors such that their outer
products add up to M. We use a direct generalization of this to define a rank r tensor.

DEFINITION 2 (RANK r TENSOR) Given a k tensor T € R™>"2X"  the rank of T is
defined as the minimum r such that T can be written as a sum of r rank 1 tensors of the
same dimensions as T.

Finally, we can define the problem of tensor decomposition.

DEFINITION 3 (TENSOR DECOMPOSITION) Given a rank r, k-tensor T, the tensor decom-
position problem asks for a decomposition of T as a sum of r rank 1 tensors (of appropriate
dimensions).

In the matrix world, we saw that low-rank decompositions are not generally unique. In
contrast, tensor decompositions will be unique under very general conditions.

0.3 Examples of Tensors

We discuss two natural and widely used higher dimensional tensors.

For a probability distribution u over R™, the third (multilinear) moment tensor of
is defined as T' € R™"™*™ such that T ;i = Ezp[zizjrr]. One can generalize this to
higher moments naturally. Moment tensors appear naturally in the study of probability
distributions especially because one can estimate them efficiently from samples drawn from
a distribution and one can design various algorithms with distributions as inputs using the
moment tensors.

Another example is a k-gram. Given a text corpus (such as the English language
wikipedia) with n possible dictionary words, one can define a tensor T € R so that
for any (i1,42,...,), Ti,is,.i; is the number of times words wj,,w;,,...,w; appeared
consecutively in the corpus (where w; denotes the 4 word in the dictionary.) As one can
imagine, k-grams are useful in building models for languages.

0.4 Tensor Decomposition: Jennrich’s Algorithm

We now give an algorithm for computing a low-rank decomposition of a tensor whenever it
exists.

The main primitive is an algorithm for computing the eigendecomposition of a matrix
M = QSQ~! whenever it exists where S is a diagonal matrix. We saw the special case
when M is symmetric in an earlier class - however, such a decomposition can exist (and can
then be computed) for non-symmetric matrices too.



We now describe Jennrich’s algorithm when all components are of dimension n. Jen-
nrich’s algorithm continues to work whenever the components of the tensor are promised
to be orthogonal (and doesn’t need all components to be of same dimension).

k
1. Input: A nxn xntensor T =) " | u; ® v; ® w; - here u; are unknown non-zero n
dimensional vectors.

2. Choose random unit vectors a,b € R"™.

3. Define contractions of T" using a and b: i.e. take matrix M, = Zfﬂ(wi, ‘1>Uivi—r and
My =Y (wy, byujo] = RTR™.

4. Compute the eigen-decomposition of MaMb_1 =QSQ~! and M, ' M.

5. We can show that with high probability, the entries of the diagonal matrices S are
distinct and inverses of the corresponding entries of 7. Then, the columns of the
matrix @ are the vectors (in some arbitrary permutation) wy,us,. .., u; and columns
of matrix R are the vectors vi,vs,...,v; - notice that the eigenvalue corresponding
to u; is the reciprocal of the eigenvalue corresponding to v; so we can match wu;s and
v;8 correctly.

6. Given u;s and v;s,we can solve the linear system of equations to find w;s.

Observe that by definition, M, = UDV " and M, = UEV " where the columns of U are
u;s and the columns of V' are v;s and D, E are diagonal matrices with entries (w;,a) and
(w;, b) respectively.

Thus, M,M; ! = UDVT(VI)T'E-1U~! = U(DE~Y)U! and similarly, M, 'M, =
(VOH=ID-WU-WWEVT = (V)"\OD'E)WT.

The correctness of the algorithm now follows from the uniqueness of eigendecomposition
of a matrix when the eigenvalues are distinct.

For a random choice of a and b, it is easy to show that with high probability (in fact
with probability 1), given that us, vs and ws are orthogonal (linear independence is in fact
enough), the eigenvalues are distinct.

The above argument can thus be used to prove the following theorem.

THEOREM 1
Given a 3 dimensional symmetric tensor

-
T:Zui@)ui@ui (1)

i=1
for orthogonal vectors ui,us,...,u, or length at most 1 and any € > 0 there exists a
polynomial time (in n and 1/e) algorithm to recover uy, ua, . .., U, such that for each i <r

llu; — @;||2 < €. As a consequence, we also get that a representation as in is unique up
to permutation of the r components. (Note: The orthogonality or symmetry conditions on
components of T is not necessary for uniqueness or efficient recovery, linear independence
suffices with a simple preprocessing step called as ”whitening” before applying Jennrich’s
algorithm above. )
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