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Economic and game-theoretic reasoning —specifically, how agents respond to economic
incentives as well as to each other’s actions– has become increasingly important in algo-
rithm design. Examples: (a) Protocols for networking have to allow for sharing of network
resources among users, companies etc., who may be mutually cooperating or competing.
(b) Algorithm design at Google, Facebook, Netflix etc.—what ads to show, which things
to recommend to users, etc.—not only has to be done using objective functions related
to economics, but also with an eye to how users and customers change their behavior in
response to the algorithms and to each other.

Algorithm design mindful of economic incentives and strategic behavior is studied in a
new field called Algorithmic Game Theory. (See the book by Nisan et al., or many excellent
lecture notes on the web.)

0.1 Game Theory

In the 1930s, polymath John von Neumann (professor at IAS, now buried in the cemetery
close to downtown) was interested in applying mathematical reasoning to understand strate-
gic interactions among people —or for that matter, nations, corporations, political parties,
etc. He was a founder of game theory, which models rational choice in these interactions as
maximization of some payoff function.

A starting point of this theory is the zero-sum game. There are two players, 1 and 2,
where 1 has a choice of m possible moves, and 2 has a choice of n possible moves. When
player 1 plays his ith move and player 2 plays her jth move, the outcome is that player 1
pays Aij to player 2. Thus the game is completely described by an m× n payoff matrix.

Figure 1: Payoff matrix for Rock/Paper/Scissor

This setting is called zero sum because what one player wins, the other loses. By
contrast, war (say) is a setting where both parties may lose material and men. Thus their
combined worth at the end may be lower than at the start. (Aside: An important stimulus
for development of game theory in the 1950s was the US government’s desire to behave
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“strategically ”in matters of national defence, e.g. the appropriate tit-for-tat policy for
waging war —whether nuclear or conventional or cold.)

von Neumann was interested in a notion of equilibrium. In physics, chemistry etc. an
equilibrium is a stable state for the system that results in no further change. In game theory
it is a pair of strategies g1, g2 for the two players such that each is the optimum response
to the other.

Let’s examine this for zero sum games. If player 1 announces he will play the ith move,
then the rational move for player 2 is the move j that maximises Aij . Conversely, if player
2 announces she will play the jth move, player 1 will respond with move i′ that minimizes
Ai′j . In general, there may be no equilibrium in such announcements: the response of player
1 to player 2’s response to his announced move i will not be i in general:

min
i

max
j

Aij 6= max
j

min
i

Aij .

In fact there is no such equilibrium in Rock/paper/scissors either, as every child knows.
von Neumann realized that this lack of equilibrium disappears if one allows players’

announced strategy to be a distribution on moves, a so-called mixed strategy. Player 1’s
distribution is x ∈ <m satisfying xi ≥ 0 and

∑
i xi = 1; Player 2’s distribution is y ∈ <n

satisfying yj ≥ 0 and
∑

j yj = 1. Clearly, the expected payoff from Player 1 to Player 2

then is
∑

ij xiAijyj = xTAy.
But has this fixed the problem about nonexistence of equilibrium? If Player 1 announces

first the payoff is minx maxy x
TAy whereas if Player 2 announces first it is maxy minx x

TAy.
The next theorem says that it doesn’t matter who announces first; neither player has an
incentive to change strategies after seeing the other’s announcement.

Theorem 1 (Famous Min-Max Theorem of Von Neumann)
minx maxy x

TAy = maxy minx x
TAy.

Turns out this result is a simple consequence of LP duality and is equivalent to it. You
will explore it further in the homework.

What if the game is not zero sum? Defining an equilibrium for it was an open problem
until John Nash at Princeton managed to define it in the early 1950s; this solution is called
a Nash equilibrium. We’ll return to it in a future lecture. BTW, you can still sometimes
catch a glimpse of Nash around campus.

0.2 Nonzero sum games and Nash equilibria

Recall that a 2-player game is zero sum if the amount won by one player is the same as
the amount lost by the other. Today we relax this. Thus if player 1 has n possible actions
and player 2 has m, then specifying the game requires two a n×m matrices A,B such that
when they play actions i, j respectively then the first player wins Aij and the second wins
Bij . (For zero sum games, Aij = −Bij .)

A Nash equilibrium is defined similarly to the equilibrium we discussed for zero sum
games: a pair of strategies, one for each player, such that each is the optimal response to
the other. In other words, if they both announce their strategies, neither has an incentive
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to deviate from his/her announced strategy. The equilibrium is pure if the strategy consists
of deterministically playing a single action.

Example 1 (Prisoners’ Dilemma) This is a classic example that people in myriad dis-
ciplines have discussed for over six decades. Two people suspected of having committed a
crime have been picked up by the police. In line with usual practice, they have been placed
in separate cells and offered the standard deal: help with the investigation, and you’ll be
treated with leniency. How should each prisoner respond: Cooperate (i.e., stick to the story
he and his accomplice decided upon in advance), or Defect (rat on his accomplice and get
a reduced term)?

Let’s describe their incentives as a 2 × 2 matrix, where the first entry describes payoff
for the player whose actions determine the row. If they both cooperate, the police can’t

Cooperate Defect

Cooperate 3, 3 0, 4

Defect 4, 0 1, 1

prove much and they get off with fairly light sentences after which they can enjoy their loot
(payoff of 3). If one defects and the other cooperates, then the defector goes scot free and
has a high payoff of 4 whereas the other one has a payoff of 0 (long prison term, plus anger
at his accomplice).

The only pure Nash equilibrium is (Defect, Defect), with both receiving payoff 1. In
every other scenario, the player who’s cooperating can improve his payoff by switching to
Defect. This is much worse for both of them than if they play (Cooperate, Cooperate),
which is also the social optimum —where the sum of their payoffs is highest at 6—is to
cooperate. Thus in particular the social optimum solution is not a Nash equilibrium. ((OK,
we are talking about criminals here so maybe social optimum is (Defect, Defect) after all.
But read on.)

One can imagine other games with similar payoff structure. For instance, two companies
in a small town deciding whether to be polluters or to go green. Going green requires
investment of money and effort. If one does it and the other doesn’t, then the one who is
doing it has incentive to also become a polluter. Or, consider two people sharing an office.
Being organized and neat takes effort, and if both do it, then the office is neat and both are
fairly happy. If one is a slob and the other is neat, then the neat person has an incentive
to become a slob (saves a lot of effort, and the end result is not much worse).

Such games are actually ubiquitous if you think about it, and it is a miracle that humans
(and animals) cooperate as much as they do. Social scientists have long pondered how to
cope with this paradox. For instance, how can one change the game definition (e.g. a wise
governing body changes the payoff structure via fines or incentives) so that cooperating
with each other —the socially optimal solution—becomes a Nash equilibrium? The game
can also be studied via the repeated game interpretation, whereby people realize that they
participate in repeated games through their lives, and playing nice may well be a Nash
equilibrium in that setting. As you can imagine, many books have been written. 2

Example 2 (Chicken) This dangerous game was supposedly popular among bored teenagers
in American towns in the 1950s (as per some classic movies). Two kids would drive their
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cars at high speed towards each other on a collision course. The one who swerved away first
to avoid a collision was the “chicken.”How should we assign payoffs in this game? Each
player has two possible actions, Chicken or Dare. If both play Dare, they wreck their cars
and risk injury or death. Lets call this a payoff of 0 to each. If both go Chicken, they both
live and have not lost face, so let’s call it a payoff of 5 for each. But if one goes Chicken and
the other goes Dare, then the one who went Dare looks like the tough one (and presumably
attracts more dates), whereas the Chicken is better of being alive than dead but lives in
shame. So we get the payoff table:

Chicken Dare

Chicken 5, 5 1, 6

Dare 6, 1 0, 0

This has two pure Nash equilibria: (Dare, Chicken) and (Dare, Chicken). We may
think of this as representing two types of behavior: the reckless type may play Dare and
the careful type may play Chicken.

Note that the socially optimal solution —both players play chicken, which maximises
their total payoff—is not a Nash equilibrium.

Many games do not have any pure Nash equilibrium. Nash’s great insight during his
grad school years in Princeton was to consider what happens if we allow players to play a
mixed strategy, which is a probability distribution over actions. An equilibrium now is a
pair of mixed strategies x, y such that each strategy is the optimum response (in terms of
maximising expected payoff) to the other.

Theorem 2 (Nash 1950)
For every pair of payoff matrices A,B there exists a mixed equilibrium.

(In fact, Wilson’s theorem from 1971 says that for random matrices A,B, the number
of equilbria is odd with high probability.)

Unfortunately, Nash’s proof doesn’t yield an efficient algorithm for computing an equi-
librium: when the number of possible actions is n, computation may require exp(n) time.
Recent work has shown that this may be inherent: computing Nash equilibria is PPAD-
complete (Chen and Deng’06).

The Chicken game has a mixed equilibrium: play each of Chicken and Dare with prob-
ability 1/2. This has expected payoff 1

4(5 + 1 + 6 + 0) = 3 for each, and a simple calculation
shows that neither can improve his payoff against the other by changing to a different
strategy.
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