
Chapter 1

Hashing

Today we briefly study hashing, both because it is such a basic data structure, and because
it is a good setting to develop some fluency in probability calculations.

1.1 Hashing: Preliminaries

Hashing can be thought of as a way to rename an address space. For instance, a router at
the internet backbone may wish to have a searchable database of destination IP addresses
of packets that are whizing by. An IP address is 128 bits, so the number of possible IP
addresses is 2128, which is too large to let us have a table indexed by IP addresses. Hashing
allows us to rename each IP address by fewer bits. Furthermore, this renaming is done
probabilistically, and the renaming scheme is decided in advance before we have seen the
actual addresses. In other words, the scheme is oblivious to the actual addresses.

Formally, we want to store a subset S of a large universe U (where |U | = 2128 in the
above example). And |S| = m is a relatively small subset. For each x 2 U , we want to
support 3 operations:

• insert(x). Insert x into S.

• delete(x). Delete x from S.

• query(x). Check whether x 2 S.

A hash table can support all these 3 operations. We design a hash function

h : U �! {0, 1, . . . , n � 1} (1.1)

such that x 2 U is placed in T [h(x)], where T is a table of size n.
Since |U | � n, multiple elements can be mapped into the same location in T , and we

deal with these collisions by constructing a linked list at each location in the table.
One natural question to ask is: how long is the linked list at each location?
This can be analysed under two kinds of assumptions:

1. Assume the input is the random.

7

8

U

h
n elements

Figure 1.1: Hash table. x is placed in T [h(x)].

2. Assume the input is arbitrary, but the hash function is random.

Assumption 1 may not be valid for many applications.
Hashing is a concrete method towards Assumption 2. We designate a set of hash func-

tions H, and when it is time to hash S, we choose a random function h 2 H and hope
that on average we will achieve good performance for S. This is a frequent benefit of a
randomized approach: no single hash function works well for every input, but the average
hash function may be good enough.

1.2 Hash Functions

Suppose we have a family of hash functions H, and for each h 2 H, h : U �! [n], where [n]
denote the set {0, 1, . . . , n � 1}. What does it mean to say these functions are random?

For any x
1

, x
2

, . . . , xm 2 S (xi 6= xj when i 6= j), and any a
1

, a
2

, . . . , am 2 [n], ideally a
random H should satisfy:

• Prh2H[h(x
1

) = a
1

] = 1

n .

• Prh2H[h(x
1

) = a
1

^ h(x
2

) = a
2

] = 1

n2

. Pairwise independence.

• Prh2H[h(x
1

) = a
1

^ h(x
2

) = a
2

^ · · · ^ h(xk) = ak] = 1

nk

. k-wise independence.

• Prh2H[h(x
1

) = a
1

^ h(x
2

) = a
2

^ · · · ^ h(xm) = am] = 1

nm

. Full independence (note
that |U | = m).

Generally speaking, we encounter a trade-o↵. The more random H is, the greater the
number of random bits needed to generate a function h from this class, and the higher the
cost of computing h.

For example, if H is a fully random family, there are nm possible h, since each of the
m elements at S have n possible locations they can hash to. So we need log |H| = m log n
bits to represent each hash function. Since m is usually very large, this is not practical.

But the advantage of a random hash function is that it ensures very few collisions with
high probability. Let Lx be the length of the linked list containing x; this is just the number

9

of elements with the same hash value as x. Let random variable

Iy =

(

1 if h(y) = h(x),

0 otherwise.
(1.2)

So Lx = 1+
P

y2S;y 6=x Iy. Furthermore, remember that expectation is a linear operator: the
expectation of the sum of random variables is the sum of their expectations. (This simple
fact saves the day in many probabilistic calculations.)

E[Lx] = 1 +
X

y2S;y 6=x

E[Iy] = 1 +
m � 1

n
(1.3)

Usually we choose n > m, so this expected length is less than 2. Later we will analyse
this in more detail, asking how likely is Lx to exceed say 100.

The expectation calculation above doesn’t need full independence; pairwise indepen-
dence would actually su�ce. This motivates the next idea.

1.3 2-Universal Hash Families

Definition 1 (Carter Wegman 1979) Family H of hash functions is 2-universal if for
any x 6= y 2 U ,

Pr
h2H

[h(x) = h(y)] 1

n
(1.4)

Sometimes this definition is relaxed to allow 2/n (or 3/n) instead of 1/n, since that
doesn’t greatly a↵ect the bucket sizes needed to handle collisions.

We can design 2-universal hash families in the following way. Choose a prime p 2
{|U |, . . . , 2|U |}, and let

fa,b(x) = ax + b mod p (a, b 2 [p], a 6= 0) (1.5)

And let
ha,b(x) = fa,b(x) mod n (1.6)

The reason this construction works is that the integers modulo p form a field when p
is prime, meaning that it is possible to define addition, multiplicition and division (except
division by 0, which is undefined) among them.

Lemma 1
For any x

1

6= x
2

and s 6= t, the following system

ax
1

+ b = s mod p (1.7)

ax
2

+ b = t mod p (1.8)

has exactly one solution.

10

Since [p] constitutes a finite field, we have that a = (x
1

� x
2

)�1(s � t) and b = s � ax
1

.
Since we have p(p � 1) di↵erent hash functions in H in this case,

Pr
h2H

[h(x
1

) = s ^ h(x
2

) = t] =
1

p(p � 1)
(1.9)

Claim H = {ha,b : a, b 2 [p] ^ a 6= 0} is 2-universal.

Proof: For any x
1

6= x
2

,

Pr[ha,b(x1

) = ha,b(x2

)] (1.10)

=
X

s,t2[p],s 6=t

�
(s=t mod n) Pr[fa,b(x1

) = s ^ fa,b(x2

) = t] (1.11)

=
1

p(p � 1)

X

s,t2[p],s 6=t

�
(s=t mod n) (1.12)

 1

p(p � 1)

p(p � 1)

n
(1.13)

=
1

n
(1.14)

where � is the Dirac delta function. Equation (1.13) follows because for each s 2 [p], we
have at most (p � 1)/n di↵erent t such that s 6= t and s = t mod n. 2

Can we design a hash function for the data set that has no collisions? We show this
is possible if n � m2, where m is the size of the set being hashed. Since for any x

1

6= x
2

,
Prh[h(x

1

) = h(x
2

)] 1

n , the expected number of total collisions is just

E[
X

x
1

6=x
2

h(x
1

) = h(x
2

)] =
X

x
1

6=x
2

E[h(x
1

) = h(x
2

)]
✓

m

2

◆

1

n
(1.15)

Since n � m2, we have

E[number of collisions] 1

2
(1.16)

and so

Pr
h2H

[9 a collision] 1

2
(1.17)

So if the size the hash table is large enough, there exists a collision-free hash function,
and in fact a random hash function from the above family is collision-free with probability
at least 1/2. But in reality, such a large table is often unrealistic.

A more practical method to deal with collisions is to allow a linked list (also called
bucket) at each location, which can be used to store additional elements in case of collisions.
Sometimes this is also called a 2-layer hash.

Specifically, let si denote the number of collisions at location i. If we can construct a
second layer table of size s2i , we can easily find a collision-free hash table to store all the si
elements. Thus the total size of the second-layer hash tables is

Pm�1

i=0

s2i .

11

0
1

n � 1

i

si elements

s2i locations

Figure 1.2: Two layer hash tables.

Note that
Pm�1

i=0

si(si �1) is just the number of collisions calculated in Equation (1.15),
so

E[
X

i

s2i] = E[
X

i

si(si � 1)] + E[
X

i

si] =
m(m � 1)

n
+ m 2m (1.18)

Do we need to know the size of the set? The above calculation shows that if n, the
size of the hash table, is roughly the same as m, the size of the set being hashed, then the
expected bucket size at each hash location (and hence the expected lookup time) is at most
2m/n, which is O(1). This leads to the question: Is it necessary to know m before we pick
the size of the hash table? The answer is no. Instead it su�ces to adaptively increase the
size of the hash table. Suppose the current hash table has size 2i. As elements of the set
arrive, keep hashing them until the expected bucket size rises above 2. This means the set
must be now of size about 2i. Now rebuild the hash table to one of size 2i+1 using a new
hash function. The total time spent in rebuilding is only O(2i+1), which is still a constant
factor times the size of the set we already have, which is 2i. Thus the entire hashing still
takes O(1) time per element.

1.3.1 Pair-wise independence

The above construction of random hash functions is a special case of a phenomenon called
pairwise independence. A set of random variables X

1

, X
2

, . . . , is called pairwise independent
if for all values s, t, and for all indices i 6= j

Pr[Xi = s ^ Xj = t] = Pr[Xi = s] Pr[Xj = t].

The above discussion actually shows that if we pick a random hash functions as above,
picking h(x) = ax + b mod p where a, b are random integers mod p, then the places where
the keys get hashed to are pairwise independent: The set of random variables h(x) are
pairwise independent (over the choice of h).

We return to this property later and also in the homeworks.

12

1.4 Load Balancing

Now we think a bit about how large the linked lists (ie number of collisions) can get. Let
us think for simplicity about hashing n keys in a hash table of size n. This is the famous
balls-and-bins calculation, also called load balance problem. We have n balls and n bins.
For simplicity, assume that each balls is assigned to a random bin. (In other words, the hash
function is a completely random function instead of just pairwise independent as above.)
Clearly, the expected number of balls in each bin is 1. But the maximum can be a fair bit
higher.

For a given i,

Pr[bini gets more than k elements]
✓

n

k

◆

· 1

nk
 1

k!
(1.19)

(This uses the union bound, that the probability that any of the
�

n
k

�

events happen is at
most the sum of the their individual probabilities.) By Stirling’s formula,

k! ⇠
p

2nk(
k

e
)k (1.20)

If we choose k = O(logn
log logn), we can let 1

k! 1

n2

. Then

Pr[9 a bin � k balls] n · 1

n2

=
1

n
(1.21)

So with probability larger than 1 � 1

n ,

max load O(
log n

log log n
) (1.22)

By changing the parameters a little, this success probability can be improved to 1 � 1

nc

for
any constant c.
Exercise: Show that with high probability the max load is indeed ⌦(log n/ log log n).

1.4.1 Improved load balancing: Power of Two Choices

The above load balancing is not bad; no more than O(logn
log logn) balls in a bin with high

probability. Can we modify the method of throwing balls into bins to improve the load
balancing? How about the method you use at the supermarket checkout: instead of going
to a random checkout counter you try to go to the counter with the shortest queue? In the
load balancing case (especially in distributed settings) this is computationally too expensive:
one has to check all n queues. A much simpler version is the following: when the ball
comes in, pick 2 random bins, and place the ball in the one that has fewer balls. Turns
out this modified rule ensures that the maximal load drops to O(log log n), which is a huge
improvement. This called the power of two choices. The intuition why this helps is that even
though the max load is O(log n/ log log n), most bins have very few balls. For instance, at
most 1/10th of the bins will have more than 10 balls. Thus when we pick two bins randomly,
the chance is good that the ball goes to a bin with constant number of balls. Let us give a
proof sketch.

13

For a ball b let us define

height(b) = load of its bin when b was placed in it.

Let ⇢(k, t) be the fraction of bins with at least k balls in it at time t.
Then the probability that the t + 1’th ball has height k + 1 is at most ⇢(k, t)2, since

both of its choices must have had at least k balls when it arrived.
Noting that ⇢(2, t) 1/2 since the total number of balls is n, we use the above logic

above to obtain:

E[fraction of balls in B w/ height(b) � i]
✓

1

2

◆

2

i�2

.

In order to bound the size of largest the bin, we want to find the value of i such that
the probability on the right is 1

n . For this we need,

2i ⇠ ⌦(log n)

) i ⇠ ⌦(log log n).

This argument is hand-wavy and not 100% precise; for a full proof please see either
various lecture notes around the web, or the Mitzenmacher et al. survey linked below.

1.5 Cuckoo Hashing

Can we do the ultimate load balancing, and obtain a hashing scheme with O(1) lookup
time? Yes, provided we are willing to take a bit of a hit on insert operations.

A simple and practical way to do this is cuckoo hashing, invented by Pagh and Rodler
in 2001. The name refers to the cuckoo’s habit of putting its eggs in crows’ nests —shifting
its parental duties to others.

The idea is that we pick two hash functions h
1

, h
2

instead of one. Thus each key x has
two possible designated spots h

1

(x), h
2

(x) to go to. When key x arrives, it randomly picks
one of these two, say h

1

(x). If h
1

(x) happens to be occupied by some other key y, then y
gets kicked out and x takes this spot. Now y has to go to its other designated location. If
that happens to be occupied, then its occupant is kicked out and and forced to go to its
other designated location. And so on. Thus insert can take an unbounded amount of time,
or even deadlock if this chain of kickings turns around and returns to x! One way to react
in case of deadlock is to rebuild the hash table in place using two new hash functions. It
can be shown that the deadlock is a very rare event (ie happens with probability less than
1/n) and so in the expectation this rebuilding cost is not a huge overhead.

It is possible to prove probabilistic bounds on the running time, as we will explore in
the homeworks.

Notice however that look up takes O(1) time: just check both of the designated locations,
and if the key is not in either, return fail.

This basic cuckoo hashing idea has (inevitably) many more variants, as a web search
will show.

