
princeton university fall ’16 cos 521:Advanced Algorithms

Homework 4

Out: Dec 7 Due: Dec 16

1. Consider a set of n objects (images, songs etc.) and suppose somebody has designed a
distance function d(·) among them where d(i, j) is the distance between objects i and
j. We are trying to find a geometric realization of these distances. Of course, exact
realization may be impossible and we are willing to tolerate a factor 2 approximation.
We want n vectors u1, u2, . . . , un such that d(i, j) ≤ |ui − uj |2 ≤ 2d(i, j) for all pairs
i, j. Describe a polynomial-time algorithm that determines whether such ui’s exist.

2. The course webpage links to a grayscale photo. Interpret it as an n×m matrix and run
SVD on it. What is the value of k such that a rank k approximation gives a reasonable
approximation (visually) to the image? What value of k gives an approximation that
looks high quality to your eyes? Attach both pictures and your code. (In matlab you
need mat2gray function.) Extra credit: Try to explain from first principles why SVD
works for image compression at all.

3. Suppose we have a set of n images and for some multiset E of image pairs we have been
told whether they are similar (denoted +edges in E) or dissimilar (denoted −edges).
These ratings were generated by different users and may not be mutually consistent
(in fact the same pair may be rated as + as well as −). We wish to partition them
into clusters S1, S2, S3, . . . so as to maximise:

(# of +edges that lie within clusters) + (# of −edges that lie between clusters).

Show that the following SDP is an upperbound on this, where w+(ij) and w−(ij) are
the number of times pair i, j has been rated + and − respectively.

max
∑

(i,j)∈E

w+(ij)(xi · xj) + w−(ij)(1− xi · xj)

|xi|22 = 1 ∀i
xi · xj ≥ 0 ∀i 6= j.

4. For the problem in the previous question describe a clustering into 4 clusters that
achieves an objective value 0.75 times the SDP value. (Hint: Use Goemans-Williamson
style rounding but with two random hyperplanes instead of one. You may need a quick
matlab calculation just like GW.)

5. Suppose you are given m halfspaces in <n with rational coefficients. Describe a
polynomial-time algorithm to find the largest sphere that is contained inside the poly-
hedron defined by these halfspaces.

1

2

6. Let f be an n-variate convex function such that for every x, every eigenvalue of
O2f(x) lies in [m,M]. Show that the optimum value of f is lowerbounded by f(x)−
1
2m |Of(x)|22 and upperbounded by f(x)− 1

2M |Of(x)|22, where x is any point. In other
words, if the gradient at x is small, then the value of f at x is near-optimal. (Hint:
By the mean value theorem, f(y) = f(x) + Of(x)T (y− x) + 1

2(y− x)TO2f(z)(y− x),
where z is some point on the line segment joining x, y.)

7. (Yet another convex minimization based algorithm for submodular minimization)

In Lecture 16, we saw that one can minimize an arbitrary submodular function by
minimizing the convex Lovász extension of the function over the solid hypercube.
This exercise presents another convex minimization based approach for the problem.
This approach gives a fast-in-practice algorithm for submodular minimization used in
many Machine Learning applications.

Recall the notation from Lecture 16: Let f : 2[n] → R be a submodular function with
f(∅) = 0 (recall the notation used : f is a set function defined on all possible subsets
of the ground set [n] = {1, 2, . . . , n} of size n). The base polyhedron of f , Bf is the
convex set in Rn defined by the inequality constraints:

x ∈ Bf ⇔ {
∑
i∈S

xi ≤ f(S) ∀S ⊆ [n];
∑
i∈n

xi = f([n])}. (1)

a) Prove the “dumbbell lemma”: Suppose J ⊆ N is such that f(J) ≤ f(K) for any
K ⊇ J or K ⊆ J . Then, f(J) = minS⊆N f(S).

b) Let x∗ be the optimal solution to minx∈Bf ‖x‖22 and set J = {i | x∗i < 0}. Prove
that f(J) = minS⊆[n] f(S). (Hint: Show that J gives a “tight” inequality in Bf , i.e,∑

j∈J x
∗
j = f(J) and use the dumbbell lemma.)

c) Show that there’s an efficient separation oracle for Bf that uses only an evaluation
oracle for f . Conclude that one can thus use the ellipsoid algorithm to minimize an
arbitrary submodular function.

In practice, instead of the ellipsoid method, one uses an iterative procedure known as
Wolfe’s method for implementing the algorithm suggested by b) above.

8. (Tensor Power Iteration, Updated)

In Lecture 12, we saw the power method for computing the eigenvector of a real
symmetric matrix M ∈ Rn×n corresponding to its largest singular value (assuming
that there’s some gap between the largest and the second largest singular values).

Now, consider the 3 tensor T =
∑

i≤k λi · ai ⊗ ai ⊗ ai for ai ∈ Rn satisfying ‖ai‖2 = 1
for each i and 〈ai, aj〉 = 0 whenever i 6= j. In Lecture 19, we saw Jennrich’s algorithm
that gives us a method to compute the ais. This problem explores the analog of the
power method for computing some single component of the tensor T .

We first need a notion of “tensor-vector multiplication”. For any x, define T · x as
the vector z ∈ Rn such that zi =

∑
j,k∈n Ti,j,kxjxk. In the tensor power method, we

start with a random vector x0 ∈ Rn satisfying ‖x0‖2 = 1 and repeatedly compute

xi = T ·xi−1

|T ·xi−1|2 for i = 1, 2, . . . , r.

3

(a) Show that for large enough t, xt converges to some ai.

(b) Give a tight estimate of the minimum t required to ensure ‖xt−ai‖2 ≤ ε in terms
of λis, n, ε and the initial choice x0.

While we understand the power method for matrices very well, theoretical analyses of
tensor power iteration is known only in very special cases (even though the method
works well in practice in very general situations.)

