
princeton university fall ’16 cos 521:Advanced Algorithms

Homework 3

Out: Nov 7 Due: Nov 18

1. Compute the mixing time (both upper and lower bounds) of a graph on 2n nodes
that consists of two complete graphs on n nodes joined by a single edge. (Hint: Use
elementary probability calculations and reasoning about “probability fluid”; no need
for eigenvalues.)

2. Let M be the Markov chain of a 5-regular undirected graph that is connected. Each
node has self-loops with probability 1/2. We saw in class that 1 is an eigenvalue with
eigenvector ~1. Show that every other eigenvalue has magnitude at most 1 − 1/10n2.
(Hint: First show that a connected graph cannot have 2 eigenvalues that are 1.)
What does this imply about the mixing time for a random walk on this graph from
an arbitrary starting point?

3. This question will study how mixing can be much slower on directed graphs. Describe
an n-node directed graph (with max indegree and outdegree at most 5) that is fully
connected but where the random walk takes exp(Ω(n)) time to mix (and the walk
ultimately does mix). Argue carefully.

4. Describe an example (i.e., an appropriate set of n points in <n) that shows that the
Johnson-Lindenstrauss dimension reduction method — the transformation described
in Lecture, with an appropriate scaling— does not preserve `1 distances within even
factor 2. (Extra credit: Show that no linear transformation suffices, let alone J-L.)

5. (Dimension reduction for SVM’s with margin) Suppose we are given two sets P,N of
unit vectors in <n with the guarantee that there exists a hyperplane a·x = 0 such that
every point in P is on one side and every point in N is on the other. Furthermore,
the `2 distance of each point in P and N to this hyperplane is at least ε. Then show
using the Johnson Lindenstrauss lemma (hint: you can use it as a black box) that a
random linear mapping to O(log n/ε2) dimensions and such that the points are still
separable by a hyperplane with margin ε/2.

6. Recall that G(n, 1/2) is the random graph on n nodes in which each edge is present
with probability exactly 1/2. In the planted clique problem, you are given a graph
G ∼ G(n, 1/2) with a clique “planted” on some k special vertices. In a previous
homework, you showed that with high probability, G ∼ G(n, 1/2) contains no clique of
size more than 2 log (n) thus, if k � 2 log (n), the added clique is the unique maximum
clique in G. In this question, we explore a spectral algorithm for the planted clique
problem.

a) Show that the second largest eigenvalue of the adjacency matrix of G ∼ G(n, 1/2)
is at most O(

√
n) with high probability. (Hint: Use the method from the class that

bounds the largest eigenvalue of a random matrix.)
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b) Show that the second largest eigenvalue of the adjacency matrix of G ∼ G(n, 1/2)+
k-clique is at least k/2 whenever k > 4

√
n.

c) Use a) and b) to give an algorithm that with high probability correctly detects
whether a k-clique has been added to a random graph for k > 4

√
n. Use matlab,

scipy or any other package to compute the eigenvalues of G(n, 1/2) and G(n, 1/2) +
k-clique for n = 400, 800, 1200 and k ∈ [

√
n/4, 4

√
n]. Include a table with the top

3 eigenvalues. (Do 3 repetitions with newly sampled graphs for each n to see if the
eigenvalue distribution is pretty stable over the samples.) Report your results. Do
they agree with the calculations made in a) and b) above?

d) (Extra Credit) Can you recover the vertices of the added clique from the second
eigenvector of G ∼ G(n, 1/2) + k-clique for k as above?

7. Implement the portfolio management appearing in the notes for Lecture 13 (”Going
with the Slope: Offline, Online and Randomly”) in any programming environment
and check its performance on S& P stock data (download from
http://ocobook.cs.princeton.edu/links.htm ). Include your code as well as the final
performance (i.e., the percentage gain achieved by your strategy).

8. (Extra credit) Calculate the eigenvectors and eigenvalues of the n-dimensional boolean
hypercube, which is the graph with vertex set {−1, 1}n and x, y are connected by an
edge iff they differ in exactly one of the n locations. (Hint: Use symmetry extensively.)


