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• Review {linear, serial, strict serial}izability

• Review concurrency controls

• Spanner

• Pro tips for Assignment 3
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Agenda
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ACID properties of transactions

• Atomicity: Either all constituent operations of the 
transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves 
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by 
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure 
of volatile (memory) or non-volatile (disk) storage



Review *izability
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• Terms come from two different communities 
(database and distributed systems). 
Overloaded!

• All refer to interleaving operations

• Definitions
– Operation: typically refers to a single access 

operation (e.g., read, write)
– Transaction: one or more operations that must 

be committed atomically
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Some context



• Guarantee for a single operation on a single
object

• Informally, writes should appear instantaneously 
within the system

• All later reads as defined by wall-clock time (i.e., 
real-time) reflect the written value or some later 
written value

• ‘Strong Consistency’ in CAP theorem
– Yes, we use consistency in ACID to mean something 

different
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Linearizability



• Guarantee for transactions, or one or more 
operations on one or more objects

• A set of transactions over some objects should 
execute as though each transaction ran in some
serial order (doesn’t specify which one!)

• No real-time (i.e., world-clock) constraints; in 
other words, no deterministic order for 
transactions

• ‘Isolation’ in ACID properties
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Serializability



• Linearizability + serializability

• Transactions have some serial behavior and 
that behavior corresponds to wall-clock time

• Straightforward to reason about for non-
overlapping transactions

• What about overlapping transactions?
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Strict serializability



Review concurrency controls
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ACID properties of transactions

• Atomicity: write-ahead logs and checkpoints

• Consistency: application logic

• Isolation: concurrency controls (locks, 2PL, 
OCC, MVCC)

• Durability: write-ahead logs and checkpoints
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ACID properties of transactions

• Atomicity: write-ahead logs and checkpoints

• Consistency: application logic

• Isolation: concurrency controls (locks, 2PL, 
OCC, MVCC)

• Durability: write-ahead logs and checkpoints



• Global lock: simple, but slow

• Per-object lock: doesn’t guarantee 
serializability (isolation)

• 2PL: gives serializability, but leaves 
opportunities on the table and can deadlock

• OCC: performs well if few conflicts, but poorly if 
many conflicts

• MVCC: snapshot isolation, not serializability 12

Concurrency controls



Distributed Transactions
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Consider partitioned data over servers
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• Why not just use 2PL?
– Grab locks over entire read and write set

– Perform writes

– Release locks (at commit time)
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Consider partitioned data over servers
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• How do you get serializability?

– On single machine, single COMMIT op in the WAL

– In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

• Centralized txn manager 
• Distributed consensus on timestamp (not all ops)
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Strawman:  Consensus per txn group?
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• Single Lamport clock, consensus per group?
– Linearizability composes!
– But doesn’t solve concurrent, non-overlapping txn problem



Spanner: Google’s Globally-
Distributed Database

OSDI 2012
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• Dozens of zones (datacenters)

• Per zone, 100-1000s of servers

• Per server, 100-1000 partitions (tablets)

• Every tablet replicated for fault-tolerance (e.g., 5x)
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Google’s Setting
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Scale-out vs. fault tolerance
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• Every tablet replicated via Paxos (with leader election)

• So every “operation” within transactions across tablets 
actually a replicated  operation within Paxos RSM

• Paxos groups can stretch across datacenters!
– (COPS took same approach within datacenter)



Disruptive idea:

Do clocks really need to be                
arbitrarily unsynchronized?

Can you engineer some max divergence?
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• “Global wall-clock time” with bounded uncertainty

time

earliest latest

TT.now()

2*ε
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TrueTime

Consider event enow which invoked tt = TT.new():
Guarantee:  tt.earliest <= tabs(enow) <= tt.latest



Timestamps and TrueTime

T

Pick s > TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε
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Commit Wait and Replication

T

Acquired locks

Start 
consensus

Notify 
followers

Commit wait donePick s
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Achieve 
consensus

Release locks



Client:

1. Issues reads to leader of each tablet group,                     
which acquires read locks and returns most recent data

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,                         
include identify of coordinator and buffered writes

5. Waits for commit from coordinator
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Client-driven transactions



• On commit msg from client, leaders acquire local write locks

– If non-coordinator:
• Choose prepare ts > previous local timestamps
• Log prepare record through Paxos
• Notify coordinator of prepare timestamp

– If coordinator:
• Wait until hear from other participants
• Choose commit timestamp  >= prepare ts, > local ts
• Logs commit record through Paxos
• Wait commit-wait period
• Sends commit timestamp to replicas, other leaders, client

• All apply at commit timestamp and release locks
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Commit Wait and 2-Phase Commit



Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2
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Start logging Done logging

Prepared

Release locks

Acquired locks Release locks

Acquired locks Release locks

Notify participants sc

Commit wait doneCompute sp for each

Compute overall sc

Committed

Send sp



Example
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TP

Remove X 
from friend list

Remove myself 
from X’s friend list

sp= 6

sp= 8

sc= 8 s = 15

Risky post P

sc= 8

Time <8
[X]

[me]

15

TC T2

[P]
My friends
My posts
X’s friends

8
[]

[]



• Given global timestamp, can implement read-only 
transactions lock-free (snapshot isolation)

• Step 1:  Choose timestamp sread = TT.now.latest()

• Step 2: Snapshot read (at sread) to each tablet
– Can be served by any up-to-date replica
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Read-only optimizations



Disruptive idea:

Do clocks really need to be                
arbitrarily unsynchronized?

Can you engineer some max divergence?
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TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS 
timemaster

GPS 
timemaster

GPS 
timemaster

Atomic-clock 
timemaster

GPS 
timemaster

Client
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GPS 
timemaster

Compute reference [earliest, latest]   =   now ± ε



time

ε

0sec 30sec 60sec 90sec

+6ms

now =  reference now + local-clock offset

ε =  reference ε + worst-case local-clock drift
=  1ms +  200 μs/sec
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TrueTime implementation

• What about faulty clocks?  
– Bad CPUs 6x more likely in 1 year of empirical data



Known unknowns > unknown unknowns

Rethink algorithms to reason about 
uncertainty
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Pro tips
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Not following Figure 2 (and, more 
generally, the paper) exactly
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The single greatest source of head-
and heartache



• These are just empty AppendEntries RPCs!

• That means you must handle all the same checks 
as you would for AppendEntries

• Otherwise, bad things can happen

• If just return true, leader thinks that follower’s log 
matches the leader’s log up through 
prevLogIndex
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Ex. 1: heartbeat RPCs



• If the follower’s log isn’t as long as the leaders, 
conflict!

• Can’t just truncate follower’s log after 
prevLogIndex. Only do so if an existing entry 
conflicts with the leader’s

• If all entries match, follower must keep any 
additional log entries it has. Why?
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Ex. 2: handling conflicts



• There are only three scenarios
– Receive AppendEntries RPC from current leader
– Start election
– Grant vote to another peer

• Tempting to reset timers everywhere; why not?
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Ex. 3: reset timers precisely!



• We must start a new election if our election timer 
fires, even if we were already a candidate in the 
middle of an election

• What can happen if we don’t?
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Ex. 4: (re)start elections



• No matter what happens, if we receive a request 
with a higher term, convert to follower and update 
currentTerm

• Don’t forget to also change votedFor!
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Ex. 5: abdicating the throne



• When checking whether a log is up to date, follow 
section 5.4! Checking length is insufficient

• If a step says ‘reply false’, return immediately and 
don’t execute subsequent steps
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Ex. 6: when and when not to be lazy



• If the commitIndex (index of highest log entry 
known to be committed) is ever greater than 
lastApplied (index of highest log entry applied to 
state machine), apply!

• Don’t need to do right away, but should have 
dedicated way of handling so we don’t have 
multiple channels trying to apply the same entry

• P.S. – don’t forget to check commitIndex > 
lastApplied…
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Ex. 7: applying log entries



• nextIndex is optimistic: assume that follower has 
all entries from previous interaction unless we 
received a negative response

• matchIndex is conservative: only update when we 
know a higher index log entry has been known to 
be replicated
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Ex. 8: matchIndex vs. nextIndex



• Yeah, don’t forget that
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Ex. 9: ignore RPCs from old terms!



Monday lecture

Conflicting/concurrent writes in 
eventual/causal systems:

OT + CRDTs

(aka how Google Docs works)
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