
Spanner: Google’s Globally-

Distributed Database

COS 418: Distributed Systems
Precept 6

Themis Melissaris and Daniel Suo

• Review {linear, serial, strict serial}izability

• Review concurrency controls

• Spanner

• Pro tips for Assignment 3

2

Agenda

3

ACID properties of transactions

• Atomicity: Either all constituent operations of the
transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure
of volatile (memory) or non-volatile (disk) storage

Review *izability

4

• Terms come from two different communities
(database and distributed systems).
Overloaded!

• All refer to interleaving operations

• Definitions
– Operation: typically refers to a single access

operation (e.g., read, write)
– Transaction: one or more operations that must

be committed atomically
5

Some context

• Guarantee for a single operation on a single
object

• Informally, writes should appear instantaneously
within the system

• All later reads as defined by wall-clock time (i.e.,
real-time) reflect the written value or some later
written value

• ‘Strong Consistency’ in CAP theorem
– Yes, we use consistency in ACID to mean something

different
6

Linearizability

• Guarantee for transactions, or one or more
operations on one or more objects

• A set of transactions over some objects should
execute as though each transaction ran in some
serial order (doesn’t specify which one!)

• No real-time (i.e., world-clock) constraints; in
other words, no deterministic order for
transactions

• ‘Isolation’ in ACID properties
7

Serializability

• Linearizability + serializability

• Transactions have some serial behavior and
that behavior corresponds to wall-clock time

• Straightforward to reason about for non-
overlapping transactions

• What about overlapping transactions?

8

Strict serializability

Review concurrency controls

9

10

ACID properties of transactions

• Atomicity: write-ahead logs and checkpoints

• Consistency: application logic

• Isolation: concurrency controls (locks, 2PL,
OCC, MVCC)

• Durability: write-ahead logs and checkpoints

11

ACID properties of transactions

• Atomicity: write-ahead logs and checkpoints

• Consistency: application logic

• Isolation: concurrency controls (locks, 2PL,
OCC, MVCC)

• Durability: write-ahead logs and checkpoints

• Global lock: simple, but slow

• Per-object lock: doesn’t guarantee
serializability (isolation)

• 2PL: gives serializability, but leaves
opportunities on the table and can deadlock

• OCC: performs well if few conflicts, but poorly if
many conflicts

• MVCC: snapshot isolation, not serializability 12

Concurrency controls

Distributed Transactions

13

14

Consider partitioned data over servers

O

P

Q

• Why not just use 2PL?
– Grab locks over entire read and write set

– Perform writes

– Release locks (at commit time)

L

L

L

U

U

U

R

R W

W

15

Consider partitioned data over servers

O

P

Q

• How do you get serializability?

– On single machine, single COMMIT op in the WAL

– In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

• Centralized txn manager
• Distributed consensus on timestamp (not all ops)

L

L

L

U

U

U

R

R W

W

16

Strawman: Consensus per txn group?

O

P

Q

L

L

L

U

U

U

R

R W

W

R

S

• Single Lamport clock, consensus per group?
– Linearizability composes!
– But doesn’t solve concurrent, non-overlapping txn problem

Spanner: Google’s Globally-
Distributed Database

OSDI 2012

17

• Dozens of zones (datacenters)

• Per zone, 100-1000s of servers

• Per server, 100-1000 partitions (tablets)

• Every tablet replicated for fault-tolerance (e.g., 5x)

18

Google’s Setting

19

Scale-out vs. fault tolerance

O

P

QQQ

PP

OO

• Every tablet replicated via Paxos (with leader election)

• So every “operation” within transactions across tablets
actually a replicated operation within Paxos RSM

• Paxos groups can stretch across datacenters!
– (COPS took same approach within datacenter)

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

20

• “Global wall-clock time” with bounded uncertainty

time

earliest latest

TT.now()

2*ε

21

TrueTime

Consider event enow which invoked tt = TT.new():
Guarantee: tt.earliest <= tabs(enow) <= tt.latest

Timestamps and TrueTime

T

Pick s > TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε

22

Commit Wait and Replication

T

Acquired locks

Start
consensus

Notify
followers

Commit wait donePick s

23

Achieve
consensus

Release locks

Client:

1. Issues reads to leader of each tablet group,
which acquires read locks and returns most recent data

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,
include identify of coordinator and buffered writes

5. Waits for commit from coordinator

24

Client-driven transactions

• On commit msg from client, leaders acquire local write locks

– If non-coordinator:
• Choose prepare ts > previous local timestamps
• Log prepare record through Paxos
• Notify coordinator of prepare timestamp

– If coordinator:
• Wait until hear from other participants
• Choose commit timestamp >= prepare ts, > local ts
• Logs commit record through Paxos
• Wait commit-wait period
• Sends commit timestamp to replicas, other leaders, client

• All apply at commit timestamp and release locks
25

Commit Wait and 2-Phase Commit

Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2

26

Start logging Done logging

Prepared

Release locks

Acquired locks Release locks

Acquired locks Release locks

Notify participants sc

Commit wait doneCompute sp for each

Compute overall sc

Committed

Send sp

Example

27

TP

Remove X
from friend list

Remove myself
from X’s friend list

sp= 6

sp= 8

sc= 8 s = 15

Risky post P

sc= 8

Time <8
[X]

[me]

15

TC T2

[P]
My friends
My posts
X’s friends

8
[]

[]

• Given global timestamp, can implement read-only
transactions lock-free (snapshot isolation)

• Step 1: Choose timestamp sread = TT.now.latest()

• Step 2: Snapshot read (at sread) to each tablet
– Can be served by any up-to-date replica

28

Read-only optimizations

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

29

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

30

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset

ε = reference ε + worst-case local-clock drift
= 1ms + 200 μs/sec

31

TrueTime implementation

• What about faulty clocks?
– Bad CPUs 6x more likely in 1 year of empirical data

Known unknowns > unknown unknowns

Rethink algorithms to reason about
uncertainty

32

Pro tips

33

Not following Figure 2 (and, more
generally, the paper) exactly

34

The single greatest source of head-
and heartache

• These are just empty AppendEntries RPCs!

• That means you must handle all the same checks
as you would for AppendEntries

• Otherwise, bad things can happen

• If just return true, leader thinks that follower’s log
matches the leader’s log up through
prevLogIndex

35

Ex. 1: heartbeat RPCs

• If the follower’s log isn’t as long as the leaders,
conflict!

• Can’t just truncate follower’s log after
prevLogIndex. Only do so if an existing entry
conflicts with the leader’s

• If all entries match, follower must keep any
additional log entries it has. Why?

36

Ex. 2: handling conflicts

• There are only three scenarios
– Receive AppendEntries RPC from current leader
– Start election
– Grant vote to another peer

• Tempting to reset timers everywhere; why not?

37

Ex. 3: reset timers precisely!

• We must start a new election if our election timer
fires, even if we were already a candidate in the
middle of an election

• What can happen if we don’t?

38

Ex. 4: (re)start elections

• No matter what happens, if we receive a request
with a higher term, convert to follower and update
currentTerm

• Don’t forget to also change votedFor!

39

Ex. 5: abdicating the throne

• When checking whether a log is up to date, follow
section 5.4! Checking length is insufficient

• If a step says ‘reply false’, return immediately and
don’t execute subsequent steps

40

Ex. 6: when and when not to be lazy

• If the commitIndex (index of highest log entry
known to be committed) is ever greater than
lastApplied (index of highest log entry applied to
state machine), apply!

• Don’t need to do right away, but should have
dedicated way of handling so we don’t have
multiple channels trying to apply the same entry

• P.S. – don’t forget to check commitIndex >
lastApplied…

41

Ex. 7: applying log entries

• nextIndex is optimistic: assume that follower has
all entries from previous interaction unless we
received a negative response

• matchIndex is conservative: only update when we
know a higher index log entry has been known to
be replicated

42

Ex. 8: matchIndex vs. nextIndex

• Yeah, don’t forget that

43

Ex. 9: ignore RPCs from old terms!

Monday lecture

Conflicting/concurrent writes in
eventual/causal systems:

OT + CRDTs

(aka how Google Docs works)

44

