
RPCs in Go

COS 418: Distributed Systems
Precept 2

Themis Melissaris and Daniel Suo

• Assignment 1 takeaways

• Assignment 2 preview

• RPCs in Go

• Implementing an RPC client

2

Plan

Assignment 1 takeaways

3

• How do I do X in Go?
– Go is more verbose than many expected
– Dealing with particulars (e.g., pointers, en/decoders)

• Wait, what exactly do I need to implement?
– Reading existing code base in new language
– Understanding the API

• Mental model (maps and reduces) vs. implementation (queue for single worker)
– More detail later

• Anything else?

4

Challenges

• Controversial!

• Two stages of sorting
– Once in the reducer after it gathers data from each of the mappers
– Once in the merge phase after the reducers finish

• In some sense, both sorts are design choices
– First: see Section 4.2 of paper (also in Appendix)
– Second: makes it easy for us to grade (and, ostensibly, for other processing,

including more maps/reduces)

• No one submitted a test case!
– Ok, because would’ve involved changing the API of the assignment

5

Sorting

Assignment 2 preview

6

• Moving from sequential to ‘distributed’
– Not really. Distributing across channels via RPC on

Unix stream sockets

• Need to implement a scheduler that assigns map and
reduce tasks to workers

• Workers may fail, but assume master does not

• Will post later today
7

Overview

8

Sequential MapReduce

File 1

…

File N

Mental Model

• Start with N files to process in parallel

• MapReduce refers to these as ’splits’. Whether these N files or
splits were from one large file or some number of existing files
doesn’t matter

9

Sequential MapReduce

File 1

…

File N

Map 1

…

Map N

Mental Model

• Our mental model suggests we process the N files in parallel,
applying the map function to each file

• However, in the sequential implementation, we apply the map
function to each file, one after another

10

Sequential MapReduce

File 1

…

File N

Map 1

…

Map N

Mental Model

• Apply the map function to each file, one after another

• Each map task writes its results to some number of intermediate
files (equal to the number of reduce tasks; in our example, 3)

11

Sequential MapReduce

File 1

…

File N

Map 1

…

Map N

Reduce
1

Reduce
2

Reduce
3

Output 1

Output 2

Output 3

Mental Model

• Once we complete all map tasks and write all intermediate results
to disk, each reduce task reads in the relevant file produced by
each map task

• Each reduce task reduces its input and writes its output to file

12

Sequential MapReduce

File 1

…

File N

Map 1

…

Map N

Reduce
1

Reduce
2

Reduce
3

Output 1

Output 2

Output 3

Merged

Mental Model

• Finally, the master program merges all outputs from the reduce
step

• We didn’t use the word ‘worker’ in sequential MapReduce, but we
implicitly had one worker

13

Sequential MapReduce

File 1

…

File N

Map 1

…

Map N

Reduce
1

Reduce
2

Reduce
3

Output 1

Output 2

Output 3

Merged

Task 1 Worker

Mental Model

Implementation

Task 2 … Task M

14

Sequential MapReduce

File 1

…

File N

Map 1

…

Map N

Reduce
1

Reduce
2

Reduce
3

Output 1

Output 2

Output 3

Merged

Reduce 1 Worker

Mental Model

Implementation

Map N … Map 1

15

Sequential MapReduce

File 1

…

File N

Map 1

…

Map N

Reduce
1

Reduce
2

Reduce
3

Output 1

Output 2

Output 3

Merged

Mental Model

• What if we had multiple workers that could take tasks at the same
time?

• Do we need to coordinate the workers in any way?

16

Distributed MapReduce

File 1

…

File N

Map 1

…

Map N

Reduce
1

Reduce
2

Reduce
3

Output 1

Output 2

Output 3

Merged

Mental Model

Implementation

Task 1 WorkerTask 2 … Task k

Task 1 WorkerTask 2 … Task j

Task 1 WorkerTask 2 … Task i

17

Distributed MapReduce

File 1

…

File N

Map 1

…

Map N

Reduce
1

Reduce
2

Reduce
3

Output 1

Output 2

Output 3

Merged

Mental Model

• Can we run all map tasks and reduce tasks in parallel?

• If not, which tasks can be run in parallel?

• In what order?

18

Distributed MapReduce

File 1

…

File N

Map 1

…

Map N

Reduce
1

Reduce
2

Reduce
3

Output 1

Output 2

Output 3

Merged

Mental Model

• We can run all map tasks in parallel, but cannot run any reduce
task until all the map tasks have finished. Why?

• When can we merge all the outputs from the reduce tasks?

sync.WaitGroup sync.WaitGroup

• Write a new computation (inverted index instead of word count)

• Implement a scheduler: which task should go on which worker
when? How do we know:
– What tasks to assign?
– When workers are available?
– Where to submit tasks?
– When workers are done?

• Hint: the algorithm should be very similar to the sequential case,
except now we have more queues

19

Distributed MapReduce

• In our implementation, do we need to worry about
concurrency?
– We have embarrassingly parallel computation

• What about in failure?
– We have idempotent operation (write same file)

20

Concurrency

RPCs in Go

21

• RPCs let us execute a procedure in a different
address space (e.g., on another computer) and
call as though it were local

• Challenges
– Latency
– Network failures
– Server failures

22

Reviewing RPCs

1. Client calls stub (local procedure call)
2. Client stub marshals parameters
3. Client OS sends message to server
4. Server OS passes message to server stub
5. Server stub unmarshals parameters
6. Server stub calls the server procedure
7. Trace back in reverse direction

23

$$$ in 7 easy steps

• Creating a server
–Create a TCP server (or some other server to receive

data)
–Create a listener that will handle RPCs
–Register the listener and accept inbound RPCs

• Write stub functions
func (t *T) MethodName(argType T1, replyType *T2) error

• See https://golang.org/pkg/net/rpc/ for more details

24

RPCs in Go (net/rpc server)

• Creating a client
client, err := rpc.DialHTTP("tcp", serverAddress + port)

• Making an RPC
var reply int

err = client.Call("Arith.Multiply", args, &reply)

• Unpacking return value
–Treat as any normal variable

25

RPCs in Go (net/rpc client)

• We are running a time server
• Goal is to implement an RPC client that uses

Cristian’s algorithm to get the server’s clock time
• Code skeleton is available on the syllabus
• You will need need the time and net/rpc

packages. Beware the difference between Time
and Duration!

26

Implementing an RPC client

27

Cristian’s Algorithm

𝑺𝒆𝒓𝒗𝒆𝒓𝑻𝒊𝒎𝒆 = 𝑻𝟑 +
(𝑻𝟒−𝑻𝟏) − (𝑻𝟑 − 𝑻𝟐)

𝟐

// GetServerTime implements Cristian's algorithm
// 1. Keep track of the appropriate timestamps from the
// local machine. Remember to get T1 close to the
// beginning of the function!
// 2. Request T2 and T3 from the server via an RPC call
// - serviceMethod: Listener.GetServerTimestamps
// - args: Request
// - reply: ServerTimestamps
// 3. Compute the server timestamp (watch out for
// duration vs. time)

go run client.go [NetID] [ServerIP] [ServerPort]

28

Implementing an RPC client

Appendix

29

• "...When a reduce worker has read all intermediate data, it
sorts it by the intermediate keys so that all occurrences of
the same key are grouped together. The sorting is
needed because typically many different keys map to
the same reduce task…

• … We guarantee that within a given partition, the
intermediate key/value pairs are processed in increasing
key order. This ordering guarantee makes it easy to
generate a sorted output file per partition, which is
useful when the output file format needs to support
efficient random access lookups by key, or users of
the output find it convenient to have the data sorted.
..."

30

Excerpt from MapReduce 4.2

• RPC examples
– https://talks.golang.org/2013/distsys.slide
– http://blog.prevoty.com/writing-your-first-rpc-in-

golang

• NTP example
– https://github.com/beevik/ntp/blob/master/ntp.go

31

Excerpt from MapReduce 4.2

