
Concurrency in Go

COS 418: Distributed Systems
Precept 1

Daniel Suo

• Concurrency

• Communicating sequential processes (CSP)

• Concurrency with shared memory

• Advanced: Goroutines vs. threads

• Advanced: CSP and shared memory?!

2

Agenda

What is concurrency?

3

“Concurrency is about dealing with
lots of things at once. Parallelism
is about doing lots of things at
once” – Rob Pike

4

Concurrency

5

Concurrency: a review

• Want to correctly and efficiently manage shared
resources accessed from multiple, concurrent
clients

• What OS constructs could we use to implement a
webserver?

• What if the webserver services requests that write
to a shared database?

6

Concurrency in Go

• Supports two styles (why?):
– Communicating sequential processes (CSP) use

communication as synchronization primitive
– Shared memory multithreading uses locks (and their ilk)

• Reason about concurrency via partial ordering
(happens-before order). See
https://golang.org/ref/mem

• Use concurrency correctly, but not responsible for the
minutiae of Go implementations

7

CSP: goroutines

• For now, assume goroutines = threads

• The main function runs in main routine
f()

go f()

• When main returns, all goroutines terminate

Example: clock.go

8

9

CSP: goroutines (example)

10

CSP: goroutines (example)

11

CSP: channels

• channels let one goroutine send values to another
ch := make(chan int) // unbuffered channel

ch := make(chan int, 0) // unbuffered channel

ch := make(chan int, 3) // buffered channel with capacity 3

• send: ch <- x // send value x to ch

• receive: x = <-ch // assign value from ch to x

• close: close(ch)
– Additional receives get zero value

– Additional sends panic

12

CSP: unbuffered channels

• The sending goroutine blocks until another
goroutine receives

• A goroutine that attempts to receive will block until
another goroutine sends

• Unbuffered channels ‘synchronize’ sending and
receiving goroutines

Example: synchronize.go

13

• Goroutines are not guaranteed to happen before
any event the program

• An aggressive compiler might remove!!
14

CSP: unbuffered channels (example)

15

CSP: unbuffered channels (example)

16

CSP: pipelines and unidirectional
channels

• Pipelines let us chain together several channels
without special syntax; just do it

• Unidirectional buffers specify buffers as just
senders
– Receive-only ch := make(<-chan int)

– Send-only ch := make(chan<- int)

Example: pipeline.go

17

18

CSP: pipelines and unidirectional
channels

• What if we we only want to send a finite set of
numbers?

19

CSP: pipelines and unidirectional
channels

20

CSP: pipelines and unidirectional
channels

• Go extends the range loop syntax for this common
case

21

CSP: buffered channels

• Unbuffered channel is a special case

• If there are items in the buffer, neither sender nor
receiver are blocked

• If the buffer is empty, the receiver is blocked; if the
buffer is full, the sender is blocked

• Choosing buffer size takes some forethought! You can
deadlock or force processes in a pipeline to wait

What will this code do?

22

Example: deadlock.go

23

24

CSP: select

• select allows multiplexing so we can receive from
multiple channels without blocking

select {
case <-ch1: // discard ch1 data

// ...
case x := <-ch2: // assign ch2 data

// ...
default:

// ...
}

Example: countdown.go

25

26

Concurrency with shared memory

• Although we can do everything with CSP,
sometimes less convenient than shared memory

• Won’t spend much time because you should be
familiar
– sync.Mutex: mutual exclusion with lock / unlock
– sync.RWMutex: multiple read, single write
– sync.Once: initialize variables once

27

Advanced topics

• Race detector is part of Go runtime/toolchain
– Looks for one goroutine accessing shared variable

recently written by another goroutine without mutex

• Go under the hood
– Greenthreads with growable stacks multiplexed on OS

threads (scheduled by Go runtime)
– Locks wrapped in a threadsafe queue

• When should you use different concurrency models?
Can you combine?

“Don't be clever.”

- Rob Pike

28

