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Time Synchronization and
Logical Clocks

COS 418: Distributed Systems
Lecture 4

Kyle Jamieson

Today
1. The need for time synchronization

2. “Wall clock time” synchronization

3. Logical Time
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A distributed edit-compile workflow

• 2143 < 2144 èmake doesn’t call compiler
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Physical time à

Lack of time synchronization result –
a possible object file mismatch 

1. Quartz oscillator sensitive to temperature, 
age, vibration, radiation
–Accuracy ca. one part per million (one 

second of clock drift over 12 days)

2. The internet is:
• Asynchronous: arbitrary message delays
• Best-effort: messages don’t always arrive

4

What makes time synchronization hard?
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Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time
– Lamport clocks
– Vector clocks
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• UTC is broadcast from radio stations on land and satellite 
(e.g., the Global Positioning System)

– Computers with receivers can synchronize their clocks 
with these timing signals

• Signals from land-based stations are accurate to about 
0.1−10 milliseconds

• Signals from GPS are accurate to about one microsecond
– Why can’t we put GPS receivers on all our computers?
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Just use Coordinated Universal Time?

• Suppose a server with an accurate clock (e.g., GPS-
disciplined crystal oscillator)
– Could simply issue an RPC to obtain the time:

• But this doesn’t account for network latency
– Message delays will have outdated server’s answer
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Synchronization to a time server

Client Server

Time ↓

1. Client sends a request packet, 
timestamped with its local clock T1

2. Server timestamps its receipt of 
the request T2 with its local clock

3. Server sends a response packet 
with its local clock T3 and T2

4. Client locally timestamps its 
receipt of the server’s response T4
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Cristian’s algorithm: Outline
Client Server

Time ↓

T1

T2

T4

T3

How the client can use these timestamps to 
synchronize its local clock to the server’s local clock?
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• Client samples round trip time 𝛿= 
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

• But client knows 𝛿, not 𝛿resp
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Cristian’s algorithm: Offset sample calculation
Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Assume: 𝛿req ≈ 𝛿resp

Goal: Client sets clock ßT3 + 𝛿resp

Client sets clock ßT3 + ½𝛿

Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time
– Lamport clocks
– Vector clocks
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• A single time server can fail, blocking timekeeping 

• The Berkeley algorithm is a distributed algorithm 
for timekeeping

– Assumes all machines have equally-accurate local 
clocks

– Obtains average from participating computers 
and synchronizes clocks to that average
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Berkeley algorithm
• Master machine: polls L other machines using Cristian’s 

algorithm à { 𝜃i } (i = 1…L)

12

Berkeley algorithm

Master



4

Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time
– Lamport clocks
– Vector clocks
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• Enables clients to be accurately synchronized to UTC 
despite message delays

• Provides reliable service
– Survives lengthy losses of connectivity
– Communicates over redundant network paths

• Provides an accurate service
– Unlike the Berkeley algorithm, leverages 

heterogeneous accuracy in clocks
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The Network Time Protocol (NTP)

• Servers and time sources are arranged in layers (strata)

– Stratum 0: High-precision time sources themselves
• e.g., atomic clocks, shortwave radio time receivers

– Stratum 1: NTP servers directly connected to Stratum 0

– Stratum 2: NTP servers that synchronize with Stratum 1
• Stratum 2 servers are clients of Stratum 1 servers

– Stratum 3: NTP servers that synchronize with Stratum 2
• Stratum 3 servers are clients of Stratum 2 servers

• Users’ computers synchronize with Stratum 3 servers
15

NTP: System structure
• Messages between an NTP client and server are 

exchanged in pairs: request and response
• Use Cristian’s algorithm

• For ith message exchange with a particular server, calculate:
1. Clock offset 𝜃i from client to server
2. Round trip time 𝛿i between client and server

• Over last eight exchanges with server k, the client 
computes its dispersion 𝜎k = maxi 𝛿i − mini 𝛿i
– Client uses the server with minimum dispersion

16

NTP operation: Server selection
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• Client tracks minimum round trip time and associated 
offset over the last eight message exchanges (𝛿0, 𝜃0)

– 𝜃0 is the best estimate of offset: client adjusts its clock by 
𝜃0 to synchronize to server
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NTP operation : Clock offset calculation

T1

T3T2

T4

o The most accurate offset θ0 is measured at the lowest delay δ0 (apex of 

)()( 2314 TTTT −−−=δ
)]()[(2

1
4312 TTTT −+−=θ

Server

Client

Clock filter algorithm

x

θ0

22-Jul-07 13

o The most accurate offset θ0 is measured at the lowest delay δ0 (apex of 
the wedge scattergram).

o The correct time θ must lie within the wedge θ0 ± (δ − δ0)/2.

o The δ0 is estimated as the minimum of the last eight delay 
measurements and (θ0 ,δ0) becomes the peer update.

o Each peer update can be used only once and must be more recent 
than the previous update.

Round trip time 𝛿

Offset 𝜃 Each point 
represents 
one sample

𝛿0

𝜃0

NTP operation: How to change time
• Can’t just change time: Don’t want time to run backwards

– Recall the make example

• Instead, change the update rate for the clock
– Changes time in a more gradual fashion
– Prevents inconsistent local timestamps
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• Clocks on different systems will always behave differently
– Disagreement between machines can result in 

undesirable behavior

• NTP, Berkeley clock synchronization
– Rely on timestamps to estimate network delays
– 100s 𝝁s−ms accuracy
– Clocks never exactly synchronized

• Often inadequate for distributed systems
– Often need to reason about the order of events
– Might need precision on the order of ns
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Clock synchronization: Take-away points Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time
– Lamport clocks
– Vector clocks

20
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• A New York-based bank wants to make its transaction 
ledger database resilient to whole-site failures

• Replicate the database, keep one copy in sf, one in nyc

Motivation: Multi-site database replication

New York
San 

Francisco

21

• Replicate the database, keep one copy in sf, one in nyc
– Client sends query to the nearest copy
– Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100
$1,111

$1,010
$1,110

Inconsistent replicas!
Updates should have been performed 

in the same order at each copy
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Idea: Logical clocks

• Landmark 1978 paper by Leslie Lamport

• Insight: only the events themselves matter 
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Idea: Disregard the precise clock time
Instead, capture just a “happens before” 

relationship between a pair of events

• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a à b)

Defining “happens-before”

Physical time ↓

P1 P2
P3

24
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1. Can observe event order at a single process

Defining “happens-before”

Physical time ↓

P1 P2
P3

a

b

25

1. If same process and a occurs before b, then a à b

Defining “happens-before”

Physical time ↓

P1 P2
P3

a

b
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1. If same process and a occurs before b, then a à b

2. Can observe ordering when processes communicate

Defining “happens-before”

P1 P2
P3

a

b
c
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Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

Defining “happens-before”

P1 P2
P3

a

b
c

28

Physical time ↓
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1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. Can observe ordering transitively

Defining “happens-before”

P1 P2
P3

a

b
c
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Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. If a à b and b à c, then a à c

Defining “happens-before”

P1 P2
P3

a

b
c

30

Physical time ↓

• Not all events are related by à

• a, d not related by à so concurrent, written as a || d

Concurrent events

31

P1

a

b
c

P2
P3

Physical time ↓

d

• We seek a clock time C(a) for every event a

• Clock condition: If a à b, then C(a) < C(b)

Lamport clocks: Objective

32

Plan: Tag events with clock times; use clock 
times to make distributed system correct
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• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci ß Ci + 1

The Lamport Clock algorithm

P1
C1=0

a

b
c

P2
C2=0 P3

C3=0

33

Physical time ↓

1. Before executing an event a, Ci ß Ci + 1:

– Set event time C(a) ß Ci

The Lamport Clock algorithm

P1
C1=1

a

b
c

P2
C2=1 P3

C3=1C(a) = 1

34

Physical time ↓

1. Before executing an event b, Ci ß Ci + 1:

– Set event time C(b) ß Ci

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=1 P3

C3=1

C(b) = 2

C(a) = 1

35

Physical time ↓

1. Before executing an event b, Ci ß Ci + 1

2. Send the local clock in the message m

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=1 P3

C3=1

C(b) = 2

C(a) = 1

C(m) = 2

36

Physical time ↓
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3. On process Pj receiving a message m:

– Set Cj and receive event time C(c) ß1 + max{ Cj, C(m) }

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=3 P3

C3=1

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3

37

Physical time ↓

Ordering all events
• Break ties by appending the process number to each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
– This is called a total ordering of events

38

• Recall multi-site database replication:
– San Francisco (P1) deposited $100:
– New York (P2) paid 1% interest:

Making concurrent updates consistent

P1 P2

$
%

39

Could we design a system that uses Lamport Clock 
total order to make multi-site updates consistent?

We reached an inconsistent state

• Client sends update to one replica àLamport timestamp C(x)

• Key idea: Place events into a local queue
– Sorted by increasing C(x)

Totally-Ordered Multicast

P1

%
1.2

$
1.1

P2

%
1.2P2’s local 

queue:
P1’s local 

queue:

40

Goal: All sites apply the updates in 
(the same) Lamport clock order
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1. On receiving an event from client, broadcast to others 
(including yourself)

2. On receiving an event from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every 

process (including yourself)

3. On receiving an acknowledgement:
– Mark corresponding event acknowledged in your queue

4. Remove and process events everyone has ack’ed from 
head of queue

Totally-Ordered Multicast (Almost correct)

41

• P1 queues $, P2 queues %

• P1 queues and ack’s %
– P1 marks % fully ack’ed

• P2 marks % fully ack’ed

Totally-Ordered Multicast (Almost correct)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

✔✔ ✔✔

(Ack’s to self not shown here)
42

P2 processes %

1. On receiving an event from client, broadcast to others 
(including yourself)

2. On receiving or processing an event:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every 

process (including yourself) only from head of queue

3. When you receive an acknowledgement:
– Mark corresponding event acknowledged in your queue

4. Remove and process events everyone has ack’ed from 
head of queue

Totally-Ordered Multicast (Correct version)

43 44

Totally-Ordered Multicast (Correct version)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$

%
%

$

✔✔ ✔

(Ack’s to self not shown here)

$
1.1

✔
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• Does totally-ordered multicast solve the problem of 
multi-site replication in general?

• Not by a long shot!  

1. Our protocol assumed:
– No node failures
– No message loss
– No message corruption

2. All to all communication does not scale
3. Waits forever for message delays (performance?)

So, are we done?

45

• Can totally-order events in a distributed system: that’s useful!

• But: while by construction, a à b implies C(a) < C(b),
– The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)

46

Take-away points: Lamport clocks

Can’t use Lamport clock timestamps to infer 
causal relationships between events

Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time
– Lamport clocks
– Vector clocks
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• Label each event e with a vector V(e) = [c1, c2 …, cn]
– ci is a count of events in process i that causally precede e

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment local entry ci

2. If process j receives message with vector [d1, d2, …, dn]:
– Set each local entry ck = max{ck, dk}
– Increment local entry cj

48

Vector clock (VC)
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• All counters start at [0, 0, 0]

• Applying local update rule

• Applying message rule
– Local vector clock 

piggybacks on inter-
process messages

49

Vector clock: Example

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]
[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

• Rule for comparing vector clocks:
–V(a) = V(b) when ak = bk for all k
–V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency: a || b if ai < bi and aj > bj, some i, j

• V(a) < V(z) when there is a chain of events 
linked by à between a and z

50

Vector clocks can establish causality

b
c

[1,0,0]
[2,0,0]

[2,1,0]

[2,2,0]

a

z

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: None

Vector clocks: V(a) < V(z)
Conclusion: a à … à z
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Vector clock timestamps tell us 
about causal event relationships

• Distributed bulletin board application
– Each post à multicast of the post to all other users

• Want: No user to see a reply before the corresponding 
original message post

• Deliver message only after all messages that causally 
precede it have been delivered
– Otherwise, the user would see a reply to a message 

they could not find

52

VC application:
Causally-ordered bulletin board system
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• User 0 posts, user 1 replies to 0’s post; user 2 observes

53

VC application:
Causally-ordered bulletin board system

P0

P1

P2

 VC  = (0,0,0)2 VC  = (1,0,0)2

VC  = (1,1,0)1

VC  = (1,0,0)0 VC  = (1,1,0)0

VC  = (1,1,0)2

m

m*

Physical time à

Original
post

1’s reply

Wednesday Topic:
Primary-Backup Replication

Pre-reading: VMware paper (on class website)
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Why global timing?
• Suppose there were an infinitely-precise and globally

consistent time standard

• That would be very handy.  For example:

1. Who got last seat on airplane?

2. Mobile cloud gaming: Which was first,A shoots B or vice-versa?

3. Does this file need to be recompiled?
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• P1 queues $, P2 queues %

• P1 queues and ack’s %
– P1 marks % fully ack’ed

• P2 marks % fully ack’ed
– P2 processes %

• P2 queues and ack’s $
– P2 processes $

• P1 marks $ fully ack’ed
– P1 processes $, then %

Totally-Ordered Multicast (Attempt #1)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

$
1.1

%
1.2

$

%

%

$

✔✔ ✔✔

Note: ack’s to self not shown here
56
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• P1 queues $, P2 queues %
• P1 queues %
• P2 queues and ack’s $

• P2 marks $ fully ack’ed
– P2 processes $

• P1 marks $ fully ack’ed
– P1 processes $
– P1 ack’s %

• P1marks % fully ack’ed
– P1 processes%

• P2 marks % fully ack’ed
– P2 processes %

Totally-Ordered Multicast (Correct version)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$

%
%

$

✔✔ ✔

(Ack’s to self not shown here)

$
1.1

✔
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• Universal Time (UT1)
– In concept, based on astronomical observation of the 

sun at 0º longitude
– Known as “Greenwich Mean Time”

• International Atomic Time (TAI)
– Beginning of TAI is midnight on January 1, 1958
– Each second is 9,192,631,770 cycles of radiation 

emitted by a Cesium atom
– Has diverged from UT1 due to slowing of earth’s rotation

• Coordinated Universal Time (UTC)
– TAI + leap seconds, to be within 0.9 seconds of UT1
– Currently TAI − UTC = 36
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Time standards

• Suppose we are running a distributed order 
processing system

• Each process = a different user
• Each event = an order

• A user has seen all orders with V(order) < the 
user’s current vector

59

VC application: Order processing


