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Network Communication and 
Remote Procedure Call

COS 418: Distributed Systems
Lecture 3

Kyle Jamieson

• A distributed system is many cooperating computers that 
appear to users as a single service

• Today— How can processes on different cooperating 
computers exchange information?

1. Network Sockets

2. Remote Procedure Call

3. Threads
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Context and today’s outline

• Process on Host A wants to talk to process on Host B

– A and B must agree on the meaning of the bits being 
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?
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The problem of communication The problem of communication

• Re-implement every application for every new underlying 
transmission medium?
– Change every application on any change to an 

underlying transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission 
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi
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Solution: Layering

• Intermediate layers provide a set of abstractions for 
applications and media

• New applications or media need only implement for 
intermediate layer’s interface

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

• Transport: Provide end-to-end 
communication between processes 
on different hosts

• Network: Deliver packets to 
destinations on other 
(heterogeneous) networks

• Link: Enables end hosts to 
exchange atomic messages with 
each other

• Physical: Moves bits between two 
hosts connected by a physical link
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Layering in the Internet

Applications

Transport layer
Network layer

Link layer
Physical layer

Host

Logical communication between layers
• How to forge agreement on the meaning of the bits 

exchanged between two hosts?

• Protocol: Rules that governs the format, contents, and 
meaning of messages
– Each layer on a host interacts with its peer host’s 

corresponding layer via the protocol interface

Application
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Network

Link
Physical

Network
Link

Physical

Application
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Physical communication
• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application
Transport
Network

Link
Physical

Network
Link
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Application
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Communication between peers
• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate with peer
– Higher layers’ headers, data encapsulated inside 

message 
• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body
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• Socket: The interface the OS provides to the network
– Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), recv()
– e.g.: put(key,value) à message
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Network socket-based communication

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Socket

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

• Principle of transparency: Hide that resource is 
physically distributed across multiple computers
– Access resource same way as locally
– Users can’t tell where resource is physically located

• put(key,value) à message with sockets?
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Network sockets: Summary

Network sockets provide apps with point-to-point 
communication between processes

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);
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Sockets don’t provide transparency
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1. Network Sockets

2. Remote Procedure Call

3. Threads
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Today’s outline
• The typical programmer is trained to write single-threaded 

code that runs in one place

• Goal: Easy-to-program network communication that makes 
client-server communication transparent

– Retains the “feel” of writing centralized code
• Programmer needn’t think about the network

• COS 418 programming assignments use RPC
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Why RPC?

What’s the goal of RPC?
• Within a single program, running in a single process, recall 

the well-known notion of a procedure call:
– Caller pushes arguments onto stack,

• jumps to address of callee function

– Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller
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RPC’s Goal: To make communication appear like a 
local procedure call: transparency for procedure calls

1. Heterogeneity
– Client needs to rendezvous with the server
– Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
– What if messages get dropped?
– What if client, server, or network fails?

3. Performance
– Procedure call takes ≈ 10 cycles ≈ 3 ns
– RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower
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RPC issues
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• Not an issue for local procedure call

• For a remote procedure call, a remote machine may:
– Represent data types using different sizes
– Use a different byte ordering (endianness)
– Represent floating point numbers differently
– Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary
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Problem: Differences in data 
representation

• Language support varies:

– Many programming languages have no inbuilt concept
of remote procedure calls
• e.g., C, C++, earlier Java: won’t generate stubs

– Some languages have support that enables RPC
• e.g., Python, Haskell, Go
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Problem: Differences in 
programming support

• Mechanism to pass procedure parameters and return values in a 
machine-independent way

• Programmer may write an interface description in the IDL
– Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
– Code to marshal (convert) native data types into machine-

independent byte streams
• And vice-versa, called unmarshaling

– Client stub: Forwards local procedure call as a request to server

– Server stub: Dispatches RPC to its implementation
19

Solution: Interface Description Language
1. Client calls stub function (pushes params onto stack)
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)



6

1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

2. Stub marshals parameters to a network message

3. OS sends a network message to the server
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server OS
proc: add | int: 3 | int: 5

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS
proc: add | int: 3 | int: 5

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5
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5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8
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9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

29

A day in the life of an RPC

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

• Dispatcher
– Receives a client’s RPC request

• Identifies appropriate server-side method to invoke

• Skeleton
– Unmarshals parameters to server-native types
– Calls the local server procedure
– Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
– Dispatcher and skeleton may be integrated

• Depends on implementation 
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The server stub is really two parts

1. Message-Oriented Communication

2. Remote Procedure Call
– Rendezvous and coordination
– Failure
– Performance

3. Threads
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Today’s outline
1. Client may crash and reboot

2. Packets may be dropped
– Some individual packet loss in the Internet
– Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow
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What could possibly go wrong?

All these may look the same to the client…
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Failures, from client’s perspective

Client Server

Time ↓

✘

✘

The cause of the failure is hidden from the client!

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
– Response takes the form of an acknowledgement 

message from the server stub

2. If no response arrives after a fixed timeout time period, 
then client stub re-sends the request

• Repeat the above a few times
– Still no response?  Return an error to the application
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At-Least-Once scheme

• Client sends a “debit $10 from bank account” RPC
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At-Least-Once and side effects

Client Server

✘

(debit $10)

(debit $10)

Time ↓

• put(x, value), then get(x): expect answer to be value

36

At-Least-Once and writes

Client

x=20

Server

put(x,10)
put(x,20)

xß10

xß20

Time ↓
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• Consider a client storing key-value pairs in a database
– put(x, value), then get(x): expect answer to be value

37

At-Least-Once and writes

Client

Time ↓

x=20

Server

put(x,10)
put(x,20)

xß10

xß10
xß20

• Yes: If they are read-only operations with no side effects
– e.g., read a key’s value in a database 

• Yes: If the application has its own functionality to cope with 
duplication and reordering
– You will need this in Assignments 3 onwards
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So is At-Least-Once ever okay?

• Idea: server RPC code detects duplicate requests 
– Returns previous reply instead of re-running handler 

• How to detect a duplicate request?
– Test: Server sees same function, same arguments twice

• No! Sometimes applications legitimately submit the 
same function with same augments, twice in a row
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At-Most-Once scheme
• How to detect a duplicate request?

– Client includes unique transaction ID (xid) with each 
one of its RPC requests

– Client uses same xid for retransmitted requests
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At-Most-Once scheme

At-Most-Once Server
if seen[xid]: 

retval = old[xid] 
else:

retval = handler() 
old[xid] = retval
seen[xid] = true

return retval
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• How to ensure that the xid is unique?

1. Combine a unique client ID (e.g., IP address) with the 
current time of day

2. Combine unique client ID with a sequence number
– Suppose the client crashes and restarts.  Can it reuse 

the same client ID?

3. Big random number
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At Most Once: Ensuring unique XIDs
• Problem: seen and old arrays will grow without bound

• Observation: By construction, when the client gets a 
response to a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete it”
– Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests
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At-Most-Once: Discarding server state

Significant overhead if many RPCs 
are in flight, in parallel

• Problem: seen and old arrays will grow without bound

• Suppose xid = ⟨unique client id, sequence no.⟩
– e.g. ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC 
– Much like TCP sequence numbers, acks 

• How does the client know that the server received the 
information about retired RPCs?
– Each one of these is cumulative: later seen messages 

subsume earlier ones
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At-Most-Once: Discarding server state
• Problem: How to handle a duplicate request while the 

original is still executing?

– Server doesn’t know reply yet.  Also, we don’t want to 
run the procedure twice 

• Idea: Add a pending flag per executing RPC
– Server waits for the procedure to finish, or ignores

44

At-Most-Once: Concurrent requests
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• Problem: Server may crash and restart

• Does server need to write its tables to disk?

• Yes!  On server crash and restart:
– If old[], seen[] tables are only in memory:

• Server will forget, accept duplicate requests
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At Most Once: Server crash and restart
• Opens a TCP connection and writes the request

– TCP may retransmit but server's TCP receiver will filter 
out duplicates internally, with sequence numbers

– No retry in Go RPC code (i.e. will not create a second 
TCP connection)

• However: Go RPC returns an error if it doesn't get a reply
– Perhaps after a TCP timeout
– Perhaps server didn’t see request
– Perhaps server processed request but server/net failed 

before reply came back
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Go’s net/rpc is at-most-once

• Go’s RPC isn’t enough for Assignments 1 and 2 
– It only applies to a single RPC call

– If worker doesn't respond, master re-sends to another
• Go RPC can't detect this kind of duplicate 

– Breaks at-most-once semantics
• No problem in Assignments 1 and 2 (handles at 

application level)

• In Assignment 3 you will explicitly detect duplicates 
using something like what we’ve talked about
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RPC and Assignments 1 and 2
• Need retransmission of at least once scheme

• Plus the duplicate filtering of at most once scheme
– To survive client crashes, client needs to record 

pending RPCs on disk
• So it can replay them with the same unique identifier

• Plus story for making server reliable
– Even if server fails, it needs to continue with full state
– To survive server crashes, server should log to disk 

results of completed RPCs (to suppress duplicates)

• Similar to Two-Phase Commit (later)
48

Exactly-once?
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• Imagine that the remote operation triggers an external 
physical thing
– e.g., dispense $100 from an ATM

• The ATM could crash immediately before or after 
dispensing and lose its state
– Don’t know which one happened

• Can, however, make this window very small

• So can’t achieve exactly-once in general, in the 
presence of external actions

Exactly-once for external actions?

• RPC everywhere!
• Necessary issues surrounding machine heterogeneity
• Subtle issues around handling failures
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Summary: RPC

1. Network Sockets

2. Remote Procedure Call

3. Threads
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Today’s outline
• One goal of this class is to give you experience and 

wisdom dealing with threads – they are tricky!

• Go terminology: threads = goroutines

• Thread = Program counter + set of registers: an execution 
context
– Can be multiple threads in the same shared memory 

address space

52

Threads
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• Challenge: Sharing data
– Two threads write same memory location
– One thread writes same memory location, other reads

• Called a race

• x = 0 initially. Thread 1: x ß x+1; Thread 2: x ß x+1
– Answer has to be 2, but if they run together can get 1

• Both threads read x before either writes back

• To fix: wrap access to the same variable with a go mutex
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Data races
• One thread wants to wait for the other thread to finish

• In Go, use Channels for communication between threads

• But beware deadlock: can be cycles in the waiting
– Thread 1 waiting for thread 2 to do something
– Thread 2 waiting for thread 1 to do something
– Sounds silly but comes up if you are not careful!
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Waiting

Monday topic:
Time synchronization, Logical Clocks

Friday precept: 
RPC, Go programming

Bring your laptop!  Will work in pairs
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APPENDIX

56
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• x86-64 is a little endian architecture
– Least significant byte of multi-byte 

entity at lowest memory address
• “Little end goes first”

• Some other systems use big endian
– Most significant byte of multi-byte 

entity at lowest memory address
• “Big end goes first”
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Review: Byte order

0000 0101

0000 0000

0000 0000

0000 0000

0x1000:
0x1001:
0x1002:
0x1003:

0000 0000

0000 0000

0000 0000

0000 0101

0x1000:
0x1001:
0x1002:
0x1003:

int 5 at address 0x1000: 

int 5 at address 0x1000: 


