
1

Network Communication and 
Remote Procedure Call

COS 418: Distributed Systems
Lecture 3

Kyle Jamieson

• A distributed system is many cooperating computers that 
appear to users as a single service

• Today— How can processes on different cooperating 
computers exchange information?

1. Network Sockets

2. Remote Procedure Call

3. Threads

2

Context and today’s outline

• Process on Host A wants to talk to process on Host B

– A and B must agree on the meaning of the bits being 
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?

3

The problem of communication The problem of communication

• Re-implement every application for every new underlying 
transmission medium?
– Change every application on any change to an 

underlying transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission 
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi



2

Solution: Layering

• Intermediate layers provide a set of abstractions for 
applications and media

• New applications or media need only implement for 
intermediate layer’s interface

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

• Transport: Provide end-to-end 
communication between processes 
on different hosts

• Network: Deliver packets to 
destinations on other 
(heterogeneous) networks

• Link: Enables end hosts to 
exchange atomic messages with 
each other

• Physical: Moves bits between two 
hosts connected by a physical link

6

Layering in the Internet

Applications

Transport layer
Network layer

Link layer
Physical layer

Host

Logical communication between layers
• How to forge agreement on the meaning of the bits 

exchanged between two hosts?

• Protocol: Rules that governs the format, contents, and 
meaning of messages
– Each layer on a host interacts with its peer host’s 

corresponding layer via the protocol interface

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter
7

Physical communication
• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter
8



3

Communication between peers
• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate with peer
– Higher layers’ headers, data encapsulated inside 

message 
• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body

9

• Socket: The interface the OS provides to the network
– Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), recv()
– e.g.: put(key,value) à message

10

Network socket-based communication

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Socket

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

• Principle of transparency: Hide that resource is 
physically distributed across multiple computers
– Access resource same way as locally
– Users can’t tell where resource is physically located

• put(key,value) à message with sockets?

11

Network sockets: Summary

Network sockets provide apps with point-to-point 
communication between processes

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

12

Sockets don’t provide transparency



4

1. Network Sockets

2. Remote Procedure Call

3. Threads

13

Today’s outline
• The typical programmer is trained to write single-threaded 

code that runs in one place

• Goal: Easy-to-program network communication that makes 
client-server communication transparent

– Retains the “feel” of writing centralized code
• Programmer needn’t think about the network

• COS 418 programming assignments use RPC

14

Why RPC?

What’s the goal of RPC?
• Within a single program, running in a single process, recall 

the well-known notion of a procedure call:
– Caller pushes arguments onto stack,

• jumps to address of callee function

– Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

15

RPC’s Goal: To make communication appear like a 
local procedure call: transparency for procedure calls

1. Heterogeneity
– Client needs to rendezvous with the server
– Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
– What if messages get dropped?
– What if client, server, or network fails?

3. Performance
– Procedure call takes ≈ 10 cycles ≈ 3 ns
– RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower

16

RPC issues



5

• Not an issue for local procedure call

• For a remote procedure call, a remote machine may:
– Represent data types using different sizes
– Use a different byte ordering (endianness)
– Represent floating point numbers differently
– Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary

17

Problem: Differences in data 
representation

• Language support varies:

– Many programming languages have no inbuilt concept
of remote procedure calls
• e.g., C, C++, earlier Java: won’t generate stubs

– Some languages have support that enables RPC
• e.g., Python, Haskell, Go

18

Problem: Differences in 
programming support

• Mechanism to pass procedure parameters and return values in a 
machine-independent way

• Programmer may write an interface description in the IDL
– Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
– Code to marshal (convert) native data types into machine-

independent byte streams
• And vice-versa, called unmarshaling

– Client stub: Forwards local procedure call as a request to server

– Server stub: Dispatches RPC to its implementation
19

Solution: Interface Description Language
1. Client calls stub function (pushes params onto stack)

20

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)



6

1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message

21

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

2. Stub marshals parameters to a network message

3. OS sends a network message to the server

22

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server OS
proc: add | int: 3 | int: 5

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

23

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS
proc: add | int: 3 | int: 5

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

24

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



7

5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

25

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg

26

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network

27

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

28

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8



8

9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

29

A day in the life of an RPC

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

• Dispatcher
– Receives a client’s RPC request

• Identifies appropriate server-side method to invoke

• Skeleton
– Unmarshals parameters to server-native types
– Calls the local server procedure
– Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
– Dispatcher and skeleton may be integrated

• Depends on implementation 

30

The server stub is really two parts

1. Message-Oriented Communication

2. Remote Procedure Call
– Rendezvous and coordination
– Failure
– Performance

3. Threads

31

Today’s outline
1. Client may crash and reboot

2. Packets may be dropped
– Some individual packet loss in the Internet
– Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow

32

What could possibly go wrong?

All these may look the same to the client…



9

33

Failures, from client’s perspective

Client Server

Time ↓

✘

✘

The cause of the failure is hidden from the client!

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
– Response takes the form of an acknowledgement 

message from the server stub

2. If no response arrives after a fixed timeout time period, 
then client stub re-sends the request

• Repeat the above a few times
– Still no response?  Return an error to the application

34

At-Least-Once scheme

• Client sends a “debit $10 from bank account” RPC

35

At-Least-Once and side effects

Client Server

✘

(debit $10)

(debit $10)

Time ↓

• put(x, value), then get(x): expect answer to be value

36

At-Least-Once and writes

Client

x=20

Server

put(x,10)
put(x,20)

xß10

xß20

Time ↓



10

• Consider a client storing key-value pairs in a database
– put(x, value), then get(x): expect answer to be value

37

At-Least-Once and writes

Client

Time ↓

x=20

Server

put(x,10)
put(x,20)

xß10

xß10
xß20

• Yes: If they are read-only operations with no side effects
– e.g., read a key’s value in a database 

• Yes: If the application has its own functionality to cope with 
duplication and reordering
– You will need this in Assignments 3 onwards

38

So is At-Least-Once ever okay?

• Idea: server RPC code detects duplicate requests 
– Returns previous reply instead of re-running handler 

• How to detect a duplicate request?
– Test: Server sees same function, same arguments twice

• No! Sometimes applications legitimately submit the 
same function with same augments, twice in a row

39

At-Most-Once scheme
• How to detect a duplicate request?

– Client includes unique transaction ID (xid) with each 
one of its RPC requests

– Client uses same xid for retransmitted requests

40

At-Most-Once scheme

At-Most-Once Server
if seen[xid]: 

retval = old[xid] 
else:

retval = handler() 
old[xid] = retval
seen[xid] = true

return retval



11

• How to ensure that the xid is unique?

1. Combine a unique client ID (e.g., IP address) with the 
current time of day

2. Combine unique client ID with a sequence number
– Suppose the client crashes and restarts.  Can it reuse 

the same client ID?

3. Big random number

41

At Most Once: Ensuring unique XIDs
• Problem: seen and old arrays will grow without bound

• Observation: By construction, when the client gets a 
response to a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete it”
– Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests

42

At-Most-Once: Discarding server state

Significant overhead if many RPCs 
are in flight, in parallel

• Problem: seen and old arrays will grow without bound

• Suppose xid = ⟨unique client id, sequence no.⟩
– e.g. ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC 
– Much like TCP sequence numbers, acks 

• How does the client know that the server received the 
information about retired RPCs?
– Each one of these is cumulative: later seen messages 

subsume earlier ones

43

At-Most-Once: Discarding server state
• Problem: How to handle a duplicate request while the 

original is still executing?

– Server doesn’t know reply yet.  Also, we don’t want to 
run the procedure twice 

• Idea: Add a pending flag per executing RPC
– Server waits for the procedure to finish, or ignores

44

At-Most-Once: Concurrent requests



12

• Problem: Server may crash and restart

• Does server need to write its tables to disk?

• Yes!  On server crash and restart:
– If old[], seen[] tables are only in memory:

• Server will forget, accept duplicate requests

45

At Most Once: Server crash and restart
• Opens a TCP connection and writes the request

– TCP may retransmit but server's TCP receiver will filter 
out duplicates internally, with sequence numbers

– No retry in Go RPC code (i.e. will not create a second 
TCP connection)

• However: Go RPC returns an error if it doesn't get a reply
– Perhaps after a TCP timeout
– Perhaps server didn’t see request
– Perhaps server processed request but server/net failed 

before reply came back

46

Go’s net/rpc is at-most-once

• Go’s RPC isn’t enough for Assignments 1 and 2 
– It only applies to a single RPC call

– If worker doesn't respond, master re-sends to another
• Go RPC can't detect this kind of duplicate 

– Breaks at-most-once semantics
• No problem in Assignments 1 and 2 (handles at 

application level)

• In Assignment 3 you will explicitly detect duplicates 
using something like what we’ve talked about

47

RPC and Assignments 1 and 2
• Need retransmission of at least once scheme

• Plus the duplicate filtering of at most once scheme
– To survive client crashes, client needs to record 

pending RPCs on disk
• So it can replay them with the same unique identifier

• Plus story for making server reliable
– Even if server fails, it needs to continue with full state
– To survive server crashes, server should log to disk 

results of completed RPCs (to suppress duplicates)

• Similar to Two-Phase Commit (later)
48

Exactly-once?



13

• Imagine that the remote operation triggers an external 
physical thing
– e.g., dispense $100 from an ATM

• The ATM could crash immediately before or after 
dispensing and lose its state
– Don’t know which one happened

• Can, however, make this window very small

• So can’t achieve exactly-once in general, in the 
presence of external actions

Exactly-once for external actions?

• RPC everywhere!
• Necessary issues surrounding machine heterogeneity
• Subtle issues around handling failures

50

Summary: RPC

1. Network Sockets

2. Remote Procedure Call

3. Threads

51

Today’s outline
• One goal of this class is to give you experience and 

wisdom dealing with threads – they are tricky!

• Go terminology: threads = goroutines

• Thread = Program counter + set of registers: an execution 
context
– Can be multiple threads in the same shared memory 

address space

52

Threads



14

• Challenge: Sharing data
– Two threads write same memory location
– One thread writes same memory location, other reads

• Called a race

• x = 0 initially. Thread 1: x ß x+1; Thread 2: x ß x+1
– Answer has to be 2, but if they run together can get 1

• Both threads read x before either writes back

• To fix: wrap access to the same variable with a go mutex

53

Data races
• One thread wants to wait for the other thread to finish

• In Go, use Channels for communication between threads

• But beware deadlock: can be cycles in the waiting
– Thread 1 waiting for thread 2 to do something
– Thread 2 waiting for thread 1 to do something
– Sounds silly but comes up if you are not careful!

54

Waiting

Monday topic:
Time synchronization, Logical Clocks

Friday precept: 
RPC, Go programming

Bring your laptop!  Will work in pairs

55

APPENDIX

56



15

• x86-64 is a little endian architecture
– Least significant byte of multi-byte 

entity at lowest memory address
• “Little end goes first”

• Some other systems use big endian
– Most significant byte of multi-byte 

entity at lowest memory address
• “Big end goes first”

57

Review: Byte order

0000 0101

0000 0000

0000 0000

0000 0000

0x1000:
0x1001:
0x1002:
0x1003:

0000 0000

0000 0000

0000 0000

0000 0101

0x1000:
0x1001:
0x1002:
0x1003:

int 5 at address 0x1000: 

int 5 at address 0x1000: 


