Cluster Scheduling

COS 418: Distributed Systems
Lecture 23
Michael Freedman

[Heavily based on content from Ion Stoica]

Key aspects of cloud computing

1. Illusion of infinite computing resources available on demand, eliminating need for up-front provisioning

2. The elimination of an up-front commitment

3. The ability to pay for use of computing resources on a short-term basis

From “Above the Clouds: A Berkeley View of Cloud Computing”

Two main sources of resource demand

• “Services”
 – External demand, scale supply to match demand

• “Data analysis”
 – Tradeoff scale & completion time
 • E.g., use 1 server for 10 hours vs. 10 servers for 1 hour
 – Source of demand elasticity!

<table>
<thead>
<tr>
<th>Type of contract</th>
<th>Price (m4.xlarge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot - 1 hr duration</td>
<td>$0.139 / hour</td>
</tr>
<tr>
<td>Spot - 6 hr duration</td>
<td>$0.176 / hour</td>
</tr>
<tr>
<td>On-demand</td>
<td>$0.215 / hour</td>
</tr>
</tbody>
</table>

Towards fuller utilization

• Source of variable demand?
 – Search, social networks, e-commerce, usage have diurnal patterns
 – Apocryphal story: AWS exists because Amazon needed to provision for holiday shopping season, wanted to monetize spare capacity

• But… if provision for peak, what around remaining time?
 – Fill-in with non-time-sensitive usage, e.g., various data crunching
 – E.g., Netflix using AWS at night for video transcoding
Today’s lecture

• Metrics / goals for scheduling resources
• System architecture for big-data scheduling

Scheduling: An old problem

• CPU allocation
 – Multiple processors want to execute, OS selects one to run for some amount of time

• Bandwidth allocation
 – Packets from multiple incoming queue want to be transmitted out some link, switch chooses one

What do we want from a scheduler?

• Isolation
 – Have some sort of guarantee that misbehaved processes cannot affect me “too much”

• Efficient resource usage
 – Resource is not idle while there is process whose demand is not fully satisfied
 – “Work conservation” – not achieved by hard allocations

• Flexibility
 – Can express some sort of priorities, e.g., strict or time based

Single Resource: Fair Sharing

• \(n \) users want to share a resource (e.g. CPU)
 – Solution: give each \(1/n \) of the shared resource

• Generalized by max-min fairness
 – Handles if a user wants less than its fair share
 – E.g. user 1 wants no more than 20%

• Generalized by weighted max-min fairness
 – Give weights to users according to importance
 – User 1 gets weight 1, user 2 weight 2
Max-Min Fairness is Powerful

- Weighted Fair Sharing / Proportional Shares
 - User u1 gets weight 2, u2 weight 1
- Priorities:
 - Give u1 weight 1000, u2 weight 1
- Reservations
 - Ensure u1 gets 10%: Give u1 weight 10, sum weights ≤ 100
- Deadline-based scheduling
 - Given a job's demand and deadline, compute user’s reservation / weight
- Isolation:
 - Users cannot affect others beyond their share

Max-min Fairness via Fair Queuing

- Fair queuing explained in a fluid flow system: reduces to bit-by-bit round robin among flows
 - Each flow receives $\min(r_i, f)$, where
 - r_i – flow arrival rate
 - f – link fair rate (see next slide)
- Weighted Fair Queuing (WFQ)
 - Associate a weight with each flow

Fair Rate Computation

- If link congested, compute f such that
 $$\sum_i \min(r_i, f) = C$$
 - $f = 4$:
 - $\min(8, 4) = 4$
 - $\min(6, 4) = 4$
 - $\min(2, 4) = 2$

Fair Rate Computation

- Associate a weight w_i with each flow i
- If link congested, compute f such that
 $$\sum_i \min(r_i, f \times w_i) = C$$
 - $f = 2$:
 - $\min(8, 2\times 3) = 6$
 - $\min(6, 2\times 1) = 2$
 - $\min(2, 2\times 1) = 2$
Theoretical Properties of Max-Min Fairness

- **Share guarantee**
 - Each user gets at least 1/n of the resource
 - But will get less if her demand is less

- **Strategy-proof**
 - Users are not better off by asking for more than they need
 - Users have no reason to lie

Why is Max-Min Fairness Not Enough?

- Job scheduling is not only about a *single* resource
 - Tasks consume CPU, memory, network and disk I/O

- What are task demands today?

Heterogeneous Resource Demands

- 2 resources: CPUs & memory
- User 1 wants *<1 CPU, 4 GB>* per task
- User 2 wants *<3 CPU, 1 GB>* per task

- What's a fair allocation?

2000-node Hadoop Cluster at Facebook (Oct 2010)
A Natural Policy

- **Asset Fairness**: Equalize each user's *sum of resource shares*

Cluster with 28 CPUs, 56 GB RAM
- U_1 needs <1 CPU, 2 GB RAM> per task, or <3.6% CPUs, 3.6% RAM> per task
- U_2 needs <1 CPU, 4 GB RAM> per task, or <3.6% CPUs, 7.2% RAM> per task

Asset fairness yields
- U_1: 12 tasks: <43% CPUs, 43% RAM> ($\Sigma=86\%$)
- U_2: 8 tasks: <28% CPUs, 57% RAM> ($\Sigma=86\%$)

Strawman for asset fairness

- **Approach**: Equalize each user's *sum of resource shares*

Cluster with 28 CPUs, 56 GB RAM
- U_1 needs <1 CPU, 2 GB RAM> per task, or <3.6% CPUs, 3.6% RAM> per task
- U_2 needs <1 CPU, 4 GB RAM> per task, or <3.6% CPUs, 7.2% RAM> per task

Problem: violates share guarantee
User 1 has < 50% of both CPUs and RAM
Better off in separate cluster with half the resources

Asset fairness yields
- U_1: 12 tasks: <43% CPUs, 43% RAM> ($\Sigma=86\%$)
- U_2: 8 tasks: <28% CPUs, 57% RAM> ($\Sigma=86\%$)

Cheating the Scheduler

- Users willing to *game* the system to get more resources

Real-life examples
- A cloud provider had quotas on map and reduce slots
 Some users found out that the map_quota was low.
 Users implemented maps in the reduce slots!
- A search company provided dedicated machines to users that
 could ensure certain level of utilization (e.g. 80%).
 Users used busy-loops to inflate utilization.

How achieve *share guarantee + strategy proofness* for sharing?
- Generalize max-min fairness to multiple resources/

Dominant Resource Fairness (DRF)

- A user's *dominant resource* is resource user has biggest share of
 - Example:

 ![Diagram](image)

 Dominant resource of User 1 is CPU (as 25% > 20%)

- A user's *dominant share*: fraction of dominant resource allocated
 - User 1’s dominant share is 25%
Dominant Resource Fairness (DRF)

- Apply max-min fairness to dominant shares
- Equalize the dominant share of the users. Example:
 - Total resources: <9 CPU, 18 GB>
 - User 1 demand: <1 CPU, 4 GB>; dom res: mem (1/9 < 4/18)
 - User 2 demand: <3 CPU, 1 GB>; dom res: CPU (3/9 > 1/18)

Online DRF Scheduler
Whenever available resources and tasks to run:
Schedule task to user with smallest dominant share

Many Competing Frameworks
- Many different “Big Data” frameworks
 - Hadoop | Spark
 - Storm | Spark Streaming | Flink
 - GraphLab
 - MPI
- Heterogeneity will rule
 - No single framework optimal for all applications
 - So… each framework runs on dedicated cluster?

Today’s lecture
1. Metrics / goals for scheduling resources
2. System architecture for big-data scheduling
One Framework Per Cluster Challenges

- Inefficient resource usage
 - E.g., Hadoop cannot use underutilized resources from Spark
 - Not work conserving
- Hard to share data
 - Copy or access remotely, expensive
- Hard to cooperate
 - E.g., Not easy for Spark to use graphs generated by Hadoop

Common resource sharing layer?

- Abstracts (“virtualizes”) resources to frameworks
- Enable diverse frameworks to share cluster
- Make it easier to develop and deploy new frameworks

Abstraction hierarchy 101

In a cluster:

... a framework (e.g., Hadoop, Spark) manages 1+ jobs
... a job consists of 1+ tasks
... a task (e.g., map, reduce) involves 1+ processes executing on single machine

- Seek fine-grained resource sharing
 - Tasks typically short: median ~ 10 sec – minutes
 - Better data locality / failure-recovery if tasks fine-grained
Approach #1: Global scheduler

- Global scheduler takes input, outputs task schedule
 - Organization policies
 - Resource Availability
 - Estimates: Task durations, input sizes, xfer sizes, ...
 - Job requirements: Latency, throughput, availability...
 - Job execution plan: Task DAG, inputs/outputs

- Advantages: “Optimal”
- Disadvantages
 - More complex, harder to scale (yet Google: 10,000s servers/scheduler)
 - Anticipate future requirements, refactor existing

Google’s Borg

- Centralized Borgmaster + Localized Borglet (manage/monitor tasks)
- Goal: Find machines for a given job

```python
job hello = {
  runtime = { cell = “ic” };
  binary = ‘./hello_webserver’;
  args = { port = ‘%port%’ };
  requirements = {
    RAM = 100M
    disk = 100M
    CPU = 0.1
  }
  replicas = 10000
}
```

- Used across all Google services
 - Services: Gmail, web search, GFS
 - Analytics: MapReduce, streaming
 - Framework controller sends master allocation request to Borg for full job

Google’s Borg

- Centralized Borgmaster + Localized Borglet (manage/monitor tasks)
- Goal: Find machines for a given job
- Allocation
 - Minimize # / priority preempted tasks
 - Pick machines already having copy of the task’s packages
 - Spread over power/failure domains
 - Mix high/low priority tasks
Approach #2: Offers, not schedule

• Unit of allocation: resource offer
 – Vector of available resources on a node
 – E.g., node1: <1CPU, 1GB>, node2: <4CPU, 16GB>

1. Master sends resource offers to frameworks
2. Frameworks:
 – Select which offers to accept
 – Perform task scheduling
 – Unlike global scheduler, requires another level of support

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center

Why does it Work?

• A framework can wait for offer that matches its constraints or preferences, reject otherwise

• Example: Hadoop’s job input is blue file

Two Key Questions

• How long does a framework need to wait?
 – Depends on distribution of task duration
 – “Pickiness” of framework given hard/soft constraints

• How allocate resources of different types?
 – Use DRF!
Ramp-Up Time

- **Ramp-Up Time**: time job waits to get its target allocation

- Example:
 - Job’s target allocation, $k = 3$
 - Number of nodes job can pick from, $n = 5$

![Ramp-Up Time Diagram]

Improving Ramp-Up Time?

- **Preemption**: preempt tasks

- **Migration**: move tasks around to increase choice:
 - Job 1 constraint set = \{m1, m2, m3, m4\}
 - Job 2 constraint set = \{m1, m2\}

- Existing frameworks implement
 - No migration: expensive to migrate short tasks
 - Preemption with task killing (e.g., Dryad’s Quincy): expensive to checkpoint data-intensive tasks

Macro-benchmark

- Simulate an 1000-node cluster
 - Job and task durations: Facebook traces (Oct 2010)
 - Constraints: modeled after Google*

- Allocation policy: fair sharing

- Scheduler comparison
 - **Resource Offers**: no preemption, and no migration
 (e.g., Hadoop’s Fair Scheduler + constraints)
 - **Global-M**: global scheduler with migration
 - **Global-MP**: global scheduler with migration and preemption

![Macro-benchmark Diagram]

Facebook: Job Completion Times

![Facebook Job Completion Times Graph]

How to allocate resources? DRF!

<table>
<thead>
<tr>
<th>Cluster: Remaining</th>
<th>Cluster: Offer</th>
<th>A's Allocation</th>
<th>B's Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10cpu, 20gb)</td>
<td>(2cpu, 2gb) to A</td>
<td>✔ (2cpu, 2gb, 20%)</td>
<td>(0cpu, 0gb, 0%)</td>
</tr>
<tr>
<td>(8cpu, 18gb)</td>
<td>(1cpu, 2gb) to B</td>
<td>✔ (2cpu, 2gb, 20%)</td>
<td>✔ (1cpu, 2gb, 10%)</td>
</tr>
<tr>
<td>(7cpu, 16gb)</td>
<td>(1cpu, 3gb) to B</td>
<td>✔ (2cpu, 2gb, 20%)</td>
<td>✔ (2cpu, 5gb, 25%)</td>
</tr>
<tr>
<td>(6cpu, 13gb)</td>
<td>(1cpu, 6gb) to A</td>
<td>✔ (2cpu, 2gb, 20%)</td>
<td>✔ (2cpu, 5gb, 25%)</td>
</tr>
<tr>
<td>(6cpu, 13gb)</td>
<td>(1cpu, 6gb) to B</td>
<td>✔ (2cpu, 2gb, 20%)</td>
<td>✔ (3cpu, 11gb, 55%)</td>
</tr>
<tr>
<td>(5cpu, 7gb)</td>
<td>(3cpu, 2gb) to B</td>
<td>✔ (5cpu, 4gb, 50%)</td>
<td>✔ (3cpu, 11gb, 55%)</td>
</tr>
</tbody>
</table>

Today’s lecture

- Metrics / goals for scheduling resources
 - Max-min fairness, weighted-fair queueing, DRF
- System architecture for big-data scheduling
 - Central allocator (Borg), two-level resource offers (Mesos)