Big Data: Graph Processing

COS 418: Distributed Systems
Lecture 21

Kyle Jamieson

(" ﬁ N\ () Patient ate\ ("
i : which
Also sold contains

Diagnoses
:P L I:_h_'> Patient
presents
purchased abdof“mal
from pain.
with Diagnosis?
E. Coli
_ infection)) L y

Big Data is Everywhere

7 SR,
: L
flickr % Yo

=)
6 Billion)
Flickr Photos

900 Million
Facebook Users

72 Hours a Minute

28 Million YouTube

Wikipedia Pages

* Machine learning is a reality

* How will we design and implement “Big
Learning” systems?

We could use

Threads, Locks, & Messages

“Low-level parallel primitives”

12/6/16

Shift Towards Use Of Parallelism in

4 = El amazon

GPUs Multlcore Clusters Clouds Supercomputers

* Programmers repeatedly solve the same parallel
design challenges:
— Race conditions, distributed state, communication...
* Resulting code is very specialized:
— Difficult to maintain, extend, debug...

Idea: Avoid these problems by using
high-level abstractions

... a better answer:

MapReduce / Hadoop

Build learning algorithms on top of
high-level parallel abstractions

MapReduce — Map Phase

] i g 'y - ;"-’_: R
|

1 T] 7

2 2 1 5

9 3 3 8

Embarrassingly Parallel independent computation
No Communication needed

MapReduce — Map Phase

2P am =i ER

2 g T 3
4 4 8 4
1 3 4 a

1 4 2 2
2 2 1 5

5 3 3 8

Image Features

12/6/16

MapReduce — Map Phase

¥
X -
2
= | | ™

T 3) : T 3
7 7 4 4
5 5 9 3

1 2 4 8 2 1 2 8
2 4 2 4 1 8 5 4
5 1 3 3 3 4 8 4

MapReduce — Reduce Phase

Outdoor Picture Indoor
Statistics Picture Statistics

22 17 '
Outdoor 2 26 Indoor
Pictures . : Pictures
26 31

Embarrassingly Parallel independent computation

1 2
2 4
9 1

6 2 1
7 1 4
5 3 S

I (o] I

o]
- =1
- ==
o =2
o=
-

o]

Image Features

Map-Reduce for Data-Parallel ML

* Excellent for large data-parallel tasks!

< Data-Parallel

Is there more to
Machine Learning

Map Reduce
Feature Algorithm ?
Extraction Tuning u

Basic Data Processing

Exploiting Dependencies

12/6/16

Graphs are Everywhere

Collaborative Filtering

Social Network
L P 0
L]
| ’/57‘5;5}.:_;\ : >

Text Analysis

e

-

Wiki

Docs

Concrete Example

Label Propagation

Label Propagation Algorithm

* Social Arithmetic: Sue Ann
50% What | list on my profile £
40% Sue Ann Likes

+ 10% Carlos Like

< 80% Cameras
. 20% Biking

40%

Profile

| Like: 60% Cameras, 40% Biking
f_} 50% illsmsn 50% Cameras

* Recurrence Algorithm: N = B0 biking
Likesli]= Y. W, Likes j] -
JjEFriends[i]
C;rlos
— iterate until convergence 10% N} 30% Cameras
70% Biking

* Parallelism:
— Compute all Likes[i] in parallel

Properties of Graph Parallel Algorithms

Iterative

Factored
Computation

Dependency

Graph Computation

What I Like

What My
Friends Like

12/6/16

Map-Reduce for Data-Parallel ML

* Excellent for large data-parallel tasks!

< Data-Parallel Graph-Parallel

MapReduce MapReduce?

Feature Algorithm lasso Label Propagation

Extraction Tuning Kernel Belief
Methods Propagation

Basic Data Processing Tensor
PageRank
Factorization

Deep Belief Neural

Networks Networks
17

Problem: Data Dependencies

* MapReduce doesn’t efficiently express
data dependencies
— User must code substantial data transformations
— Costly data replication I

Independent Data Rows

Iterative Algorithms

* MR doesn'’t efficiently express iterative algorithms:

lterations

T ermmm—
Slow
Processor

MapAbuse: Iterative MapReduce

* Only a subset of data needs computation:

llerations

12/6/16

MapAbuse: Iterative MapReduce

* System is not optimized for iteration:

[eusd %sia
© 6 EEE6E
[eusd %sia

Kyjeuad Yisiq

>

D
D
D
D
0a2)
0a2)
@)

ML Tasks Beyond Data-Parallelism

< Data-Parallel Graph-Parallel

~
Map Reduce <
GraphlLab
Feature Cross

Extraction Validation Graphical Models Semi-Supervised

Gibbs Sampling Learning
Computing Sufficient Belief Propagation Label Propagation

Statistics Variational Opt. CoEM

Collaborative Graph Analysis

Filtering PageRank

Tensor Factorization Triangle Counting

* Limited CPU Power
* Limited Memory
* Limited Scalability

23

'Challenges:
'-‘ Distribute state

- Keep data consistent
Provide fault tolerance

12/6/16

The GraphLab Framework
[Graph Based \

Data Representation

Update Functions
User Computation

- J

Consistency Model

25

Data Graph

Data is associated with both vertices and edges

Graph: O—O

* Social Network

Vertex Data: '
* User profile
* Current interests estimates

Edge Data: ﬁ
* Relationship
(friend, classmate, relative)

Distributed Data Graph

Partition the graph across multiple machines:

27

Distributed Data Graph

* Ghost vertices maintain adjacency structure
and replicate remote data.

12/6/16

Distributed Data Graph

* Cut efficiently using HPC Graph partitioning
tools (ParMetis / Scotch / ...

The GraphLab Framework

Graph Based mpdate Function}
Data Representation User Computation

\J J

Consistency Model

Update Function

A user-defined program, applied to a
vertex; transforms data in of vertex

Update function applied (asynchronously)

in parallel until convergence
Many schedulers available to prioritize computation

—————————————————————————————

Selectively triggers
computation at neighbors

Distributed Scheduling

Each machine maintains a schedule over the vertices it owns

Distributed Consensus used to identify completion

Ensuring Race-Free Code

* How much can computation overlap?

33

The GraphLab Framework

Graph Based Update Functions
Data Representation User Computation
Consistency Model
5@

PageRank Revisited
Pagerank(scope) {
vertex.PageRank = a
ForEach inPage:
vertex.PageRank += (1 - &) x inPage.PageRank

35

PageRank data races confound convergence

===|nconsistent
)
5
2.38
4
2.36
4 234
s
::': 2.32
2
3
£3 23
e
E .25
H
E]
2.26

0 50 100 150 200 250 300 350 400
Runtime (s)

12/6/16

Racing PageRank: Bug
Pagerank(scope) {

|vertex PageRank|= o

ForEach inPage:

(vertex PageRank]+= (1 - &) x inPage PageRank

37

Racing PageRank: Bug Fix
Pagerank(scope) {
tmp =
ForEach inPage:
tmp += (1 -a)xinPage.PageRank

Throughput != Performance
Throughput

(#updates/sec)

39

Serializability

For every parallel execution, there exists a sequential execution
of update functions which produces the same result.

CPU 1
Parallel
CPU 2
Sequential Single
CPU 0

12/6/16

10

Serializability Example

Write
- AR LA

User-tunable consistency levels

trades off para//e/ism & consistency N
erlapping regions

. -\ ;‘.} are only read.

Update functions one vertex apart can be run in parallel.

Edge Consistency

0

Distributed Consistency

¢ Solution 1: Chromatic Engine
— Edge Consistency via Graph Coloring

@- @

- @

* Solution 2: Distributed Locking

Time

Chromatic Distributed Engine

43

Matrix Factorization

* Netflix Collaborative Filtering
— Alternating Least Squares Matrix Factorization

Model: 0.5 million nodes, 99 million edges

Users

Users Movies

==

Netflix

}D

Movies

12/6/16

11

Netflix Collaborative Filtering

3
=
516
©
€14
<
212
S 10
3
% 8
6
4
2
48 16 24 32 40 48 56 64 1C|48 16 24 32 40 48 56 64
machines # machines
(D=20)

Distributed Consistency

* Solution 1: Chromatic Engine
— Edge Consistency via Graph Coloring
— Requires a graph coloring to be available

— Frequent barriers = inefficient when only some
vertices active

* Solution 2: Distributed Locking

Distributed Locking

Edge Consistency can be guaranteed through locking.

) o
o & &

®

47

Consistency Through Locking

Acquire write-lock on center vertex, read-lock on adjacent.

Performance problem: Acquiring a lock from a
neighboring machine incurs a latency penalty

48

12/6/16

12

Time

Simple locking

| g

>| Process request 1 |

N

scope 1 acquired
update_function 1
release scope 1

/

\I Process release 1 |

49

Pipelining hides latency

GraphlLab Idea: Hide latency using pipelining

lock scope 1
lock scope 2
lock scope 3
scope 1 acquired
scope 2 acquired
scope 3 acquired
update_function 1
release scope 1
update_function 2
release scope 2

Process request 2
Process request 3

Time

Process release 1

Distributed Consistency

* Solution 1: Chromatic Engine

— Edge Consistency via Graph Coloring
— Requires a graph coloring to be available

— Frequent barriers = inefficient when only some
vertices active

* Solution 2: Distributed Locking
— Residual BP on 190K-vertex/560K-edge graph, 4 machines
— No pipelining: 472 sec; with pipelining: 10 sec

How to handle machine failure?

* What when machines fail? How do we
provide fault tolerance?

* Strawman scheme: Synchronous snapshot
checkpointing
1. Stop the world
2. Write each machines’ state to disk

12/6/16

13

12/6/16

Snapshot Performance Chandy-Lamport checkpointing

8
25x10

\S]

. Step 1. Atomically one initiator
No Snapshot
_ (a) Turns red, (b) Records its own state)
PO N\ W Y o i Snanshot..__, (c) sends marker to neighbors

How can we do better, leveraging

*
¥

, . . >
FiraphLab > con5|stgncy mechanisms: Step 2. On receiving marker non-red

é 1/ \Shagshottime \ One slow node atomically: (a) Turns red,
2 05 machine (b) Records its own state, (c) sends

: 9 . First-in, first-

Siow machine] markers along all outgoing channels out channels
% 50 100 150 i Implemented within GraphLab as an Update Function i
time elapsed(s) 53
Async. Snapshot Performance Summary
8
25 0 « Two diff hods of achievi i
No Snapshot wo different methods of achieving consistency

o — Graph Coloring
3 Snapshot — Distributed Locking with pipelining
:31.5 * Efficient implementations
§ \\ One slow * Asynchronous FT w/fine-grained Chandy-Lamport
S 1 .
£ machine
S

0.4 No system performance penalty | Performance | | Efficiency | | Scalability
incurred from the slow machine! -
o 50 100 150 Useability
time elapsed(s) 55 s

14

Friday Precept:
Roofnet performance
More Graph Processing

Monday topic:
Streaming Data Processing

12/6/16

15

