
12/6/16

1

Big Data: Graph Processing

COS 418: Distributed Systems
Lecture 21

Kyle Jamieson

[Content adapted from J. Gonzalez]

Patient	
presents	
abdominal	

pain.

Diagnosis?

Patient	ate

which	
contains

purchased
from

Also	sold

to

Diagnoses	

with
E.	Coli	

infection	

Big	Data	is	Everywhere

• Machine	learning	is	a	reality

• How	will	we	design	and	implement	“Big	
Learning”	systems?

3

72	Hours	a	Minute
YouTube28	Million	

Wikipedia	Pages

900	Million
Facebook	Users

6	Billion	
Flickr	Photos

Threads,	Locks,	&	Messages	

“Low-level	parallel	primitives”

We	could	use	….

12/6/16

2

Shift	Towards	Use	Of	Parallelism	in	
ML

• Programmers	repeatedly solve	the	same	parallel	
design	challenges:
– Race	conditions,	distributed	state,	communication…	

• Resulting	code	is	very	specialized:
– Difficult to	maintain,	extend,	debug…	

5

GPUs Multicore Clusters Clouds Supercomputers

Idea:	Avoid	these	problems	by	using	
high-level	abstractions

MapReduce	/	Hadoop

Build	learning	algorithms	on	top	of	
high-level	parallel	abstractions

...	a	better answer:

CPU 1 CPU 2 CPU 3 CPU 4

MapReduce	– Map	Phase

7

Embarrassingly	Parallel	independent	computation	

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

No	Communication	needed

CPU 1 CPU 2 CPU 3 CPU 4

MapReduce	– Map	Phase

8

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

Image	Features

12/6/16

3

CPU 1 CPU 2 CPU 3 CPU 4

MapReduce	– Map	Phase

9

Embarrassingly	Parallel	independent	computation	

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

1
7
.
5

6
7
.
5

1
4
.
9

3
4
.
3

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

CPU 1 CPU 2

MapReduce	– Reduce	Phase

10

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

1
7
.
5

6
7
.
5

1
4
.
9

3
4
.
3

22
26
.
26

17
26
.
31

Image	Features

Outdoor	Picture
Statistics

Indoor
Picture	Statistics

I										O											O											I												I													I											O										O											I											O										I													I

Outdoor
Pictures

Indoor
Pictures

Belief
Propagation

Label	Propagation

Kernel
Methods

Deep	Belief
Networks

Neural
Networks

Tensor	
Factorization

PageRank

Lasso

Map-Reduce	for	Data-Parallel	ML
• Excellent	for	large	data-parallel	tasks!

11

Data-Parallel Graph-Parallel

Algorithm	
Tuning

Feature	
Extraction

Map	Reduce

Basic	Data	Processing

Is there more to
Machine Learning

?
Exploiting	Dependencies

12/6/16

4

Graphs	are	Everywhere

Us
er
s

Movies

Netflix

Collaborative	Filtering

Do
cs

Words

Wiki

Text	Analysis

Social	Network

Probabilistic	Analysis

Concrete	Example

Label	Propagation

Profile

Label	Propagation	Algorithm
• Social	Arithmetic:

• Recurrence	Algorithm:

– iterate	until	convergence
• Parallelism:

– Compute	all	Likes[i] in	parallel

Sue	Ann

Carlos

M
e

40%

10%

50%

80%	Cameras
20%	Biking

30%	Cameras
70%	Biking

50%	Cameras
50%	Biking

50%	What	I	list	on	my	profile
40%	Sue	Ann	Likes
10%	Carlos	Like

I	Like:

+
60%	Cameras,	40%	Biking

Likes[i]= Wij × Likes[j]
j∈Friends[i]
∑

Properties	of	Graph	Parallel	Algorithms

Dependency
Graph

Iterative
Computation

What I Like

What My
Friends Like

Factored	
Computation	

12/6/16

5

Belief
Propagation

Label	Propagation

Kernel
Methods

Deep	Belief
Networks

Neural
Networks

Tensor	
Factorization

PageRank

Lasso

Map-Reduce	for	Data-Parallel	ML
• Excellent	for	large	data-parallel	tasks!

17

Data-Parallel Graph-Parallel

MapReduce MapReduce?
Algorithm	
Tuning

Feature	
Extraction

Basic	Data	Processing

Problem:	Data	Dependencies
• MapReduce	doesn’t efficiently	express
data	dependencies
– User	must	code	substantial	data	transformations	
– Costly	data	replication

In
de

pe
nd

en
t	D

at
a	
Ro

w
s

Sl
ow

Pr
oc
es
so
r

Iterative	Algorithms
• MR	doesn’t	efficiently	express	iterative algorithms:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Ba
rr
ie
r

Ba
rr
ie
r

Ba
rr
ie
r

MapAbuse:	Iterative	MapReduce
• Only	a	subset	of	data	needs	computation:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Ba
rr
ie
r

Ba
rr
ie
r

Ba
rr
ie
r

12/6/16

6

MapAbuse:	Iterative	MapReduce
• System	is	not	optimized	for	iteration:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Disk Penalty

Disk Penalty

Disk Penalty

Startup Penalty

Startup Penalty

Startup Penalty

6. Before

8. After

7. After

ML	Tasks	Beyond	Data-Parallelism	

Data-Parallel Graph-Parallel

Cross
Validation

Feature	
Extraction

Map	Reduce

Computing	Sufficient
Statistics	

Graphical	Models
Gibbs	Sampling

Belief	Propagation
Variational	Opt.

Semi-Supervised	
Learning

Label	Propagation
CoEM

Graph	Analysis
PageRank

Triangle	Counting

Collaborative	
Filtering

Tensor	Factorization

22

23

• Limited CPU	Power
• LimitedMemory
• Limited Scalability

Distributed	Cloud

Challenges:
- Distribute state
- Keep data consistent
- Provide fault tolerance

24

Scale	up	computational	resources!

12/6/16

7

The	GraphLab	Framework

Consistency	Model

Graph	Based
Data	Representation

Update	Functions
User	Computation

25

Data	Graph
Data	is	associated	with	both	vertices	and	edges

Vertex	Data:
• User	profile
• Current	interests	estimates

Edge	Data:
• Relationship	
(friend,	classmate,	relative)

Graph:
• Social	Network

26

Distributed	Data	Graph

27

Partition	the	graph	across	multiple	machines: • Ghost	vertices	maintain	adjacency	structure	
and	replicate	remote data.

“ghost”	vertices

28

Distributed	Data	Graph

12/6/16

8

Distributed	Data	Graph

• Cut	efficiently	using	HPC	Graph	partitioning	
tools	(ParMetis	/	Scotch	/	…)

29

“ghost”	vertices

The	GraphLab	Framework

Consistency	Model

Graph	Based
Data	Representation

Update	Functions
User	Computation

30

Pagerank(scope){
//	Update	the	current	vertex	data

//	Reschedule	Neighbors	if	needed
if	vertex.PageRank	changes	then	
reschedule_all_neighbors;	

}

vertex.PageRank = α
ForEach inPage:

vertex.PageRank += (1−α)× inPage.PageRank

Update	Function
A	user-defined	program, applied	to	a
vertex;	transforms	data	in	scope of	vertex

Selectively triggers	
computation	at	neighbors

Update	function	applied	(asynchronously)	
in	parallel	until	convergence

Many	schedulers	available	to	prioritize	computation

31

Distributed	Scheduling

e

ih

ba

f g

kj

dc
a

h

f

g

j

cb

i

Each	machine	maintains	a	schedule over	the	vertices	it	owns

32Distributed Consensus used to identify completion

12/6/16

9

• How	much	can	computation	overlap?

Ensuring	Race-Free	Code

33

The	GraphLab	Framework

Consistency	Model

Graph	Based
Data	Representation

Update	Functions
User	Computation

34

PageRank	Revisited

35

Pagerank(scope)	{

…
}

vertex.PageRank = α
ForEach inPage:

vertex.PageRank += (1−α)× inPage.PageRank
vertex.PageRank = tmp

PageRank	data	races	confound	convergence

36

12/6/16

10

Racing	PageRank:	Bug

37

Pagerank(scope)	{

…
}

vertex.PageRank = α
ForEach inPage:

vertex.PageRank += (1−α)× inPage.PageRank
vertex.PageRank = tmp

Racing	PageRank:	Bug	Fix

38

Pagerank(scope)	{

…
}

vertex.PageRank = α
ForEach inPage:

vertex.PageRank += (1−α)× inPage.PageRank
vertex.PageRank = tmp

tmp

tmp

Throughput	!=	Performance

No	Consistency

Higher	
Throughput
(#updates/sec)

Potentially	Slower	
Convergence	of	ML

39

Serializability

40

For	every	parallel	execution,	there	exists	a	sequential	execution	
of	update	functions	which	produces	the	same	result.	

CPU 1

CPU 2

Single
CPU

Parallel

Sequential

time

12/6/16

11

Serializability	Example

41

Read

Write

Update	functions	one vertex	apart	can	be	run	in	parallel.

Edge	Consistency	

Overlapping regions
are only read.

Stronger	/	Weaker	
consistency	levels	available

User-tunable	consistency	levels
trades	off	parallelism	&	consistency

Distributed	Consistency

• Solution	1:Chromatic	Engine
– Edge	Consistency	via	Graph	Coloring

• Solution	2:	Distributed	Locking

Chromatic	Distributed	Engine

Ti
m
e

Execute tasks
on all vertices of

color 0
Execute tasks

on all vertices of
color 0

Ghost Synchronization Completion + Barrier

Execute tasks
on all vertices of

color 1

Execute tasks
on all vertices of

color 1

Ghost Synchronization Completion + Barrier

43

Matrix	Factorization
• Netflix	Collaborative	Filtering

– Alternating	Least	Squares	Matrix	Factorization
Model:	0.5	million	nodes,	99	million	edges

Netflix

Users

Movies

DD

44

Users Movies

12/6/16

12

Netflix	Collaborative	Filtering

45

4 8 16 24 32 40 48 56 641
2

4

6

8

10

12

14

16

#Nodes

Sp
ee

du
p

Ideal
d=100 (30M Cycles)
d=50 (7.7M Cycles)

d=20 (2.1M Cycles)
d=5 (1.0M Cycles)

Ideal

D=100

D=20

#	machines
4 8 16 24 32 40 48 56 64101

102

103

104

#Nodes
R
un
tim

e(
s) Hadoop MPI

GraphLab

HadoopMPI

GraphLab

#	machines

(D	=	20)

vs
		4
	m

ac
hi
ne

s

Distributed	Consistency

• Solution	1:Chromatic	Engine
– Edge	Consistency	via	Graph	Coloring
– Requires	a	graph	coloring	to	be	available
– Frequent	barriers	à inefficient when	only	some
vertices	active

• Solution	2:	Distributed	Locking

Distributed	Locking
Edge	Consistency	can	be	guaranteed	through	locking.

:	RW	Lock

47

Consistency	Through	Locking
Acquire	write-lock	on	center	vertex,	read-lock	on	adjacent.

48

Performance	problem:	Acquiring	a	lock	from	a	
neighboringmachine	incurs	a	latency	penalty

12/6/16

13

Simple	locking

lock scope 1

Process request 1

scope	1	acquired
update_function 1
release	scope	1

Process release 1

Ti
m
e

49

Pipelining	hides	latency
GraphLab Idea:	Hide	latency	using	pipelining

lock scope 1

Process request 1

scope	1	acquired

update_function 1
release	scope	1

Process release 1

lock scope 2

Ti
m
e lock scope 3 Process request 2

Process request 3
scope	2	acquired
scope	3	acquired

update_function 2
release	scope	2 50

Distributed	Consistency

• Solution	1:Chromatic	Engine
– Edge	Consistency	via	Graph	Coloring
– Requires	a	graph	coloring	to	be	available
– Frequent	barriers	à inefficient when	only	some
vertices	active

• Solution	2:	Distributed	Locking
– Residual	BP	on	190K-vertex/560K-edge	graph,	4	machines
– No	pipelining:	472	sec;	with	pipelining:	10	sec

How	to	handle	machine	failure?

• What	when	machines	fail?		How do	we	
provide	fault	tolerance?

• Strawman	scheme:	Synchronous	snapshot
checkpointing
1. Stop	the	world
2. Write	each	machines’	state	to	disk

12/6/16

14

Snapshot	Performance

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

sync. snapshot

no snapshot

async. snapshot

53

No Snapshot

Snapshot

One	slow	
machine

How	can	we	do	better,	leveraging
GraphLab’s	consistency	mechanisms?

Snapshot	time

Slow	machine

Chandy-Lamport	checkpointing
Step	1.	Atomically	one	initiator
(a)	Turns	red,	(b)	Records	its	own	state	

(c)	sends	marker to	neighbors

Step	2.	On	receiving	marker	non-red
node	atomically:	(a)	Turns	red,
(b)	Records	its	own	state,	(c)	sends	
markers	along	all	outgoing	channels First-in,	first-

out	channels	
between	nodes

Implemented	within	GraphLab	as	an	Update	Function

Async.	Snapshot	Performance

0 50 100 1500

0.5

1

1.5

2

2.5x 108

time elapsed(s)

ve
rti

ce
s

up
da

te
d

sync. snapshot

no snapshot

async. snapshot

55

No Snapshot

Snapshot

One	slow	
machine

No	system	performance	penalty	
incurred	from	the	slow	machine!

Summary

• Two	different	methods	of	achieving	consistency
– Graph	Coloring
– Distributed	Locking	with	pipelining

• Efficient	implementations
• Asynchronous	FT	w/fine-grained	Chandy-Lamport

56

Performance

Useability

Efficiency Scalability

12/6/16

15

Friday	Precept:
Roofnet	performance
More	Graph	Processing

Monday	topic:
Streaming	Data	Processing

57

