

Context, ca. 2000-2005

- Mobile ad hoc networking research
 - Mobile, hence highly dynamic topologies
 - Chief metrics: routing protocol overhead, packet delivery success rate, hop count
 - Largely evaluated in simulation
- Today: Roofnet, a real mesh network deployment

 Fixed. PC-class nodes
 - Motivation: shared Internet access in community
 - Chief metric: TCP throughput
 - "Test of time" system, led to Cisco Meraki

Roofnet: Design Choices

- 1. Volunteer users host nodes at home
 - Open participation without central planning
 - No central **control** over topology
- 2. Omnidirectional rather than directional antennas
 - Ease of installation: no choice of neighbors/aiming
 - Links interfere, likely low quality
- 3. Multi-hop routing (not single-hop hot spots)
 - Improved coverage (path diversity)
 - Must build a routing protocol
- 4. Goal: high TCP throughput

Roofnet: Goals and non-goals

- Each part of the mesh architecture had been previously examined in isolation
- Paper contribution: A systematic evaluation of whether their architecture can achieve the goal of providing Internet access
- Stated non-goals for paper:
 - Throughput of multiple concurrent flows
 - Scalability in number of nodes
 - Design of routing protocols

meraki

Hardware design

- PC Ethernet interface provides wired Internet for user
- Omnidirectional antenna in azimuthal direction
 - 3 dB vertical beam width of 20 degrees
 - Wide beam sacrifices gain but removes the need for perfect vertical antenna orientation
- 802.11b radios (Intersil Prism 2.5 chipset)
 - 200 mW transmit power
 - All share same 802.11 channel (frequency)

Node addresses

- · Auto-configuration of wireless interface IP address
 - High byte: private (e.g., net 10) prefix
 - Roofnet nodes not reachable from Internet
 - Low three bytes: low 24 bits of Ethernet address
- NAT between wired Ethernet and Roofnet
 - Private addresses (192.168.1/24) for wired hosts
 Can't connect to one another; only to Internet
 - Result: No address allocation coordination across Roofnet boxes required

Internet gateways

- Node sends DHCP request on Ethernet then tests reachability to Internet hosts
 - Success indicates node is an **Internet gateway**
 - Gateways translate between Roofnet and Internet IP address spaces
- Roofnet nodes track gateway used for each open TCP connection they originate
 - If best gateway changes, open connections continue to use gateway they already do
- If a Roofnet gateway fails, existing TCP connections through that gateway will fail

Links: Wired v. wireless

- Wired links
 - Most wired links offer bit error rate ca. 10⁻¹²
 - Links are "all" (connected) or "nothing" (cut)
- · Wireless links
 - Bit error rate depends on signal to interference plus noise ratio (SNR) at receiver
 - Dependent on distance, attenuation, interference
- · Would like: Wireless links like wired links

Today

1. Roofnet: An unplanned Wi-Fi Mesh network

- Wireless mesh link measurements
- Routing and bit rate selection
- End-to-end performance evaluation
- 2. Advertisement for COS-598A

Routing Protocol: Srcr (2)

- Gateways periodically flood queries for a non-existent destination address
 - Everyone learns route to the gateway
 - When a node sends data to gateway, gateway learns route back to the node
- Flooded queries might not follow the best route; solution:
 - 1. Add link metric info in query's source route to database
 - 2. Compute **best route** from query's source
 - 3. Replace query's path from source with best route
 - 4. Rebroadcast the modified query

Link metric: Strawmen

- Discard links with loss rate above a threshold?
 Risks unnecessarily disconnecting nodes
- Product of link delivery rates → prob. of e2e delivery?
 Ignores inter-hop interference
 - Prefers 2-hop, 0% loss route over 1-hop, 10% loss route (but latter is **double throughput**)
- Throughput of highest-loss link on path?
 Also ignores inter-hop interference

ETX: Expected Transmission Count

- Link ETX: predicted number of transmissions
 - Calculate link ETX using forward, reverse delivery rates
 - To avoid retry, data packet and ACK must succeed
 - Link ETX = 1 / ($d_f \times d_r$)
 - d_f = forward link delivery ratio (data packet)
 - *d_r* = reverse link delivery ratio (ack packet)
- Path ETX: sum of the link ETX values on a path

19

Measuring link delivery ratios

- Nodes periodically send broadcast probe packets
 - All nodes know the **sending period** of probes
 - All nodes compute loss rate based on how many probes arrive, per measurement interval
- Nodes enclose these loss measurements in their transmitted probes
 - e.g. B tells node A the link delivery rate from A to B

Multi-bitrate radios

- ETX assumes all radios run at same bit-rate
 - But 802.11b rates: {1, 2, 5.5, 11} Mbit/s
- Can't compare two transmissions at 1 Mbit/s with two at 2 Mbit/s
- **Solution:** Use expected **time** spent on a packet, rather than transmission count

ETT: Expected Transmission Time

- ACKs always sent at 1 Mbps, data packets 1500 bytes
- Nodes send 1500-byte broadcast probes at every bit rate *b* to compute *forward link delivery rates d_f(b)*
 Send 60-byte (min size) probes at 1 Mbps → *d_r*
- At each bit-rate b, $ETX_b = 1 / (d_f(b) \times d_r)$
- For packet of length S, $ETT_b = (S / b) \times ETX_b$
- Link ETT = $\min_b (ETT_b)$

<text><list-item><list-item><text>

26

28

Auto bit-rate selection (cont'd)

- Ideally, could choose exact bit-rate that at given SNR, gives highest throughput and nearly zero loss
- Instead, 802.11b bit-rates are quantized at roughly powers of two
- **Result:** Over a single hop, bit-rate **2R** with **up to 50%** loss always higher throughput than bit-rate **R**!

Bit-rate selection in RoofNet: SampleRate

- Samples delivery rates of actual data packets using 802.11 retransmit indication
- Occasionally sends packets at rates other than current rate
- Sends most packets at rate predicted to offer best throughput (as with ETT)
- Adjusts per-packet bit-rate faster than ETT route selection
 - Only one hop of information required
 - Delivery ratio estimates not periodic, but per-packet

Today

1. Roofnet: An unplanned Wi-Fi Mesh network

- Wireless mesh link measurements
- Routing and bit rate selection
- End-to-end performance evaluation
- 2. Advertisement for COS-598A

Roofnet evaluation

Datasets:

25

- 1. Multi-hop TCP: 15-second, 1-way bulk TCP transfers between all node pairs
- 2. Single-hop TCP: same, direct link between all node pairs
- 3. Loss matrix: loss rate between all node pairs for 1500-byte broadcasts at each bit-rate
- TCP flows, always a single flow at a time
- But background traffic present: users always active

Hops	Number of	Throughput	Latency
	Pairs	(kbits/sec)	(ms)
1	158	2451	14
2	303	771	26
3	301	362	45
4	223	266	50
5	120	210	60
6	43	272	100
7	33	181	83
8	14	159	119
9	4	175	182
10	1	182	218
no route	132	0	_
Avg: 2.9	Total: 1332	Avg: 627	Avg: 39

User experience: Mean throughput from gateway Hops Number of nodes Throughput (kbits/sec) Latency (ms)

- Latency: 84-byte ping; okay for interactive use
- Acceptable throughput (379 Kbit/sec), even four hops out

Evaluation strategy: Multi-hop v. AP

- Add gateways (GWs) to the network one by one
- "Optimal": at each step, add the GW that maximizes number of newly connected nodes
- "Random": use randomly selected set of GWs of designated size; repeat for 250 trials; take median set (by number of connected nodes)

Today

1. Roofnet: An unplanned Wi-Fi Mesh network

43

2. Advertisement for COS-598A

 In a way that is accessible for students with solely a computer systems and networking background

www.cs.princeton.edu/courses/archive/spring17/cos598A

COS-598A: Topics and goals

- TCP over wireless
- Rateless error control codes
- Wi-Fi based localization
- Indoor radar
- Full-duplex wireless
- Goal: Understand the state of the art in the above areas

 Develop taste in research
- **Goal:** Investigate novel ideas in the above areas thru project

45

Wednesday topic: Big Data Processing Graph processing (GraphLab)