Conflict Resolution (OT), Crypto,
and Untrusted Cloud Services

COS 418: Distributed Systems
Lecture 17

Michael Freedman

Today’s Topics

+ Conflict resolution

— Operational Transformation (OT)

* Crypto Introduction

— Crypto (encryption, digital signatures), hash functions

* Untrusted Cloud Storage (SPORC)

— OT + crypto + fork* consistency

* Next lecture: Bitcoin and blockchains and consensus, oh my!

3

Warning:

This lecture jumps around

But there is some logic
+ crypto background for blockchain

Conflict Resolution

Concurrent writes can conflict

General approach:
Encode ops as incremental update

» Encountered in many different settings:
— Peer-to-peer (Bayou)

— Multi-master: single cluster (Dynamo), wide-area (COPS)

« Potential solutions

— “Last writer wins”

» Thomas Write Rule for DBs with timestamp-based
concurrency control: Ignore outdated writes

— Application-specific merge/update: Bayou, Dynamo

+ Consider banking (double-entry bookkeeping):
— Initial: Alice = $50, Bob = $20
— Alice pays Bob $10

- Option 1: set Alice to $40, set Bob to $30

« Option 2: decrement Alice -$10, incremental Bob +$10
— #2 better, but can’t always ensure Alice >= $0

» Works because common mathematical ops are
— Commutative: AeB == B-A
— Invertible: AoAl==

Consider shared word processing

Consider shared word processing

* How do | insert a new word?
— Send entire doc to server? Not efficient

— Send update operation!

File Edit View Inset Format Tools Table Add-ons Help Al changes saved in Drive comments NCRCE
Docs home [EEENIL BTV Normal text Arial 105 B Z U A- M - A

What is Lorem Ipsum?

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been
the industry's standard dummy text ever since the, when an unknown printer took a galley of type
and scrambled it to make a type specimen book. It has survived not only five centuries, but also the
leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s
with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with
desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Where does it come from?

* How do | insert a new word?
— Send entire doc to server? Not efficient
— Send update operation! insert (string, position) = insert(“1500s”, 166)

— Warning: Insert (rather than replace) shifted position of all following text

File Edit View Insert Format Tools Table Add-ons Help Al changes saved in Drive Comments m
T - ~ 7 oo% - Normaitext Avial 105 B Z UA- Mo /-| A

4

What is Lorem Ipsum?

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been
the industry's standard dummy text ever since the 15008, when an unknown printer took a galley of
type and scrambled it to make a type specimen book. It has survived not only five centuries, but also
the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the
1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with
desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Where does it come from?

Operations must be commutative

$40 A
Withdraw Deposit Insert Delete
$10 / \ $15 (“1500s”, 166/ \ (1,0)

$30 $55 B (9

Deposit Withdraw Delete
$15 $10 (1,0)

[delete 1 char as pos 0]

Operations must be commutative

Withdraw Deposit Insert Delete
$10 / \ $15 (“1500s” 166/ \ (1,0)
$30 $55

Deposi \ /Nlthdraw Delete \ / Insert
$15 $10 (1,0) ‘1500s”,

[delete 1 char as pos 0]

PROBLEM!

Operations must be commutative

Withdraw Deposit Insert Delete
$10 $15 (“1500s”, 166) (1,0)

$30 $55 B C

Depos\ /Nithdraw Delete \ / Insert
$15 $10 (1,0) (“1500s”, 165)

[delete 1 char as pos 0]

Operations must be commutative

$40
Withdraw Deposit Insert Delete
$10 / \ $15 (“1500s” 166/ \ (1,0)
$30 $55
Deposit ﬁithdraw / \ / \
$15 $10
$45

Operational Transformation (OT)

» State of systemis S, ops a and b performed by concurrently on state S

« Different servers can apply concurrent ops in different sequential order
— Server 1:
» Receives a, applies atostate S: S©@ a
+ Receives b (which is dependenton S, not S© a)
« Transforms b across all ops applied since S (namely a): b’ = OT(b,{a}
+ Applies b’ to state: S@a © p’

— Server2
» Receives b, applies b to state: S© b
* Receives a, performs transformation a’ = OT(a,{b}),
« Applies a’to state: S© b © g’

« Servers 1 and 2 have identical final states: S@a® b’ ==S© hH© g’

Operational Transformation (OT)

(Used in Google Docs, EtherPad, etc.)

7 Lemmle

Alice Bob
State: ABCDE State: ABCDE
Ops: | ins ins Ops: | ins ins

13
Operational Transformation (OT)
(Used in Google Docs, EtherPad, etc.)
A A P
Alice Bob
State: ACDE State: ABCE
Ops: [ine | ins | dei2 Ops: | Jns | ine | deis

15

14
Operational Transformation (OT)
(Used in Google Docs, EtherPad, etc.)
MN
Alice Bob
State: ACD State: ACE
Ops: [e | I0S | del 2] dei 4 Ops: | Jns | ins | deia] dei2

Operational Transformation (OT)

(Used in Google Docs, EtherPad, etc.)

7 Leele

Alice Bob
State: ACE State: ACE
Ops:| ins ins Ops: | ins ins
Ps: | ames | “pg» | de! 2] det 3 ps: [t | ipe | de! 4] der 2
del 4 del 2

17

Intro to crypto in 15 minutes

What is Cryptography?

* From Greek, meaning “secret writing”
» Confidentiality: encrypt data to hide content

Include “signature” or “message authentication code”

— Integrity: Message has not been modified
— Authentication: Identify source of message

encryption decryption
plaintext === ciphertext === plaintext

* Modern encryption:

— Algorithm public, key secret and provides security
— Symmetric (shared secret) or asymmetric (public-private key)

Symmetric (Secret Key) Crypto

» Sender and recipient share common key
— Main challenge: How to distribute the key?

» Provides dual use:
— Confidentiality (encryption)
— Message authentication + integrity (MAC)

» 1000x more computationally efficient than asymmetric

21

Symmetric Cipher Model

Symmetric key
(shared secret,
known to A & B)

> aN!3q
*nB5+

C=E(M, K) M=D(C, K)
B %
e NS
C =Cipher text D = Decryption
M = Message (plaintext) ‘ 7”1 function

K = Secret Key
E = Encryption function

HiBob HiBob
. Alice Alice .
.‘ / Ciphertext \ .

22

Public-Key Cryptography

« Each party has (public key, private key)

» Alice’s public key PK
— Known by anybody
— Bob uses PK to encrypt messages to Alice
— Bob uses PK to verify signatures from Alice

» Alice’s private/secret key: sk
— Known only by Alice
— Alice uses sk to decrypt ciphertexts sent to her
— Alice uses sk to generate new signatures on messages

23

Public-Key Cryptography

* (PK, sk) = generateKey(keysize)

* Encryption API
— ciphertext = encrypt (message, PK)
— message = decrypt (ciphertext, sk)

» Digital signatures API
— Signature = sign (message, sk)
— isValid = verify (signature, message, PK)

24

(Simple) RSA Algorithm

* Generating a key:
— Generate composite n = p * q, where p and q are secret primes
— Pick public exponent e
— Solve for secret exponentdin d-e =1 (mod (p-1) (q— 1))
— Public key = (e, n), private key = d

+ Encrypting message m: ¢=m® mod n

+ Decrypting ciphertextc: m = cd modn

» Security due to cost of factoring large numbers
— Finding (p,q) given n takes O(e 09 109109 Ny gperations
— n chosen to be 2048 or 4096 bits long

25

Cryptography Hash Functions |

» Take message m of arbitrary length and produces
fixed-size (short) number H(m)

* One-way function
— Efficient: Easy to compute H(m)
— Hiding property: Hard to find an m, given H(m)

» Assumes “m” has sufficient entropy, not just {*heads”, “tails”}
— Random: Often assumes for output to “look” random

27

Cryptographic hash function

('and using them in systems)

Cryptography Hash Functions Il

+ Collisions exist: | possible inputs | >> | possible outputs |

... but hard to find

+ Collision resistance:
— Strong resistance: Findany m!=m’ suchthat H(m)==H(m’)
— Weak resistance: Givenm, findm’ suchthat H(m)==H(m’)
— For 160-bit hash (SHA-1)

« Finding any collision is birthday paradox: 24{160/2} = 280

« Finding specific collision requires 22160
28

Example use #1: Passwords

» Can't store passwords in a file that could be read
— Concerned with insider attacks / break-ins

* Must compare typed passwords to stored passwords
— Does H (input) == H (password) ?

* Memory cheap: build table of all likely password hashes?
— Use “salt” to compute h = H (password || salt)
— Store salt as plaintext in password file, not a secret

— Then check whether H (input, salt) ==

29

Hash Pointers

v |

h=H(")

(data)

30

Self-certifying names

v

(data)

Fname = H()

» P2P file sharing software (e.g., Limewire)
— File named by Fname = H (data)
— Participants verify that H (downloaded) == Frame

3

Self-certifying names

Cname=H(|) H(I) H(I) H(I) H(I)
\J v v \J \J

chunk chunk chunk chunk chunk

 BitTorrent
— Large file split into smaller chunks (~256KB each)
— Torrent file specifies the name/hash of each chunk
— Participants verify that H (downloaded) == Crame

— Security relies on getting torrent file from trustworthy source
32

Hash chains Hash chains

H(,) H(\)

1 1 1 1 1 1

J prev: H(') J prev: H(') J prev: H(') J prev: H(') J prev:ﬁ(') J prev: ﬁ(')
data data data d% data data

If data changes, all subsequent hash pointers change

Creates a “tamper-evident” log of data
Otherwise, found a hash collision!

33 34

Untrusted Cloud Storage

Operational Transformation
+

Hash Chains & Digital Signatures
+

Fork* Linearizability

SPORC:

Group Collaboration using
Untrusted Cloud Resources

Ariel J. Feldman, William P. Zeller,
Michael J. Freedman, Edward W. Felten

OSDI 2010

SPORC goals

Practical cloud apps
* Flexible framework
* Real-time collaboration

* Work offline

Untrusted servers
» Can't read user data
« Can’t tamper with user data without risking detection

+ Clients can recover from tampering

38

Making servers untrusted

Client 1 Client 2

T

39

Making servers untrusted

App Encrypted
logic state + Storage

* Ordering msgs

$\\

Client 1 ——~ | Client 2
App Copy of App Copy of
logic state Iogu: state Cllel‘lt

Server SPORC Server’s limited role:

40

10

How do you keep clients’
local copies consistent?

Problem #1

(esp. with offline access)

Server A

E"CIV:"E" Insert Delete
state (“1500s”, 166) (1,0)

Insert
Delete
‘ \ , 0)\ / 15005, 165)

Client 1 Client 2

App Copy of App Copy of I =
logic state Client

How do you deal with
a malicious server?

Problem #2:

-
Encrypted

state

Client 1 Client 2

App Copy of App Copy of I N
logic state Client

42

Dealing with a malicious server

Digital signatures aren’t enough

Server can equivocate

C

fork* consistency [Lmor] &
Honest server: linearizability

G |

* Malicious server: Alice and
Bob detect equivocation after
exchanging 2 messages

* Embed hash chain in every msg

Server can still fork the clients, but can’t unfork
43

System design

SPORC lib

11

System design

Client oot
app state

Committed Pending
fork*
consistent

causally
consistent

45

System design

System design

Client —
Local

Committed Pending

[(TTTTT]

Compare history
hash chains

Verify &
decrypt

SPORC lib

Server
Encrypted state

oo

pd

Client

a7

Client Server
app I;:a(;ael Encrypted state
N)
" Committed Pending]
Encrypt
& sign
SPORC lib
46
System design
Client Server
app ';z;:' Encrypted state

Committed Pending

[TTTT1T]

Compare history
hash chains

decrypt
SPORC lib

[

If opk depends on op;, it includes
H(op; || H(op;.1 || H(op;.2 -..))

Possible as ops sequentially
ordered by server

Client

48

12

System design

Client Server
E d stat
D
1

Committed Pending

-

Decrypt Client
& verify

SPORC lib
49

System design

Client Server
app Encrypted state

-

Committed Pending

CLT 1T

Client

SPORC lib

50

Recovering from a fork

Alice’s
history: DZD%-

Fork!
history:

Can use OT to resolve malicious forks too

51

Access control

Challenges

» Server can’t do it — it’s untrusted!
* Preserving causality

» Concurrency makes it harder

Encrypted
state

Solutions

» Ops encrypted with symmetric key shared by clients
» ACL changes are ops too

» Concurrent ACL changes handled with barriers

52

13

Summary

» Concurrent operations in eventual-/casual-
consistent systems introduce conflicts

— OT provides general way to merge conflicting ops

— Newer, more powerful techniques: CRDTs
+ Collision resistance in cryptographic hashes can

be leveraged to ensure data integrity

— Used in variety of settings. Key idea in Bitcoin!

53

Monday lecture

Bitcoin
and blockchains
and consensus,
oh my!

14

