Strong Consistency & CAP Theorem

COS 418: Distributed Systems
Lecture 13

Michael Freedman

Consistency models

2PC / Consensus Eventual consistency

msss————

Paxos / Raft Dynamo

Consistency in Paxos/Raft

Correct consistency model?

+ Fault-tolerance / durability: Don’t lose operations

+ Consistency: Ordering between (visible) operations

¥ ¥
| |
Va v

B

* Let's say Aand B send an op.

* Allreaders seeA—B?

* Allreaderssee B —>A?

* Some see A— B and others B >A?

Paxos/RAFT has strong consistency

» Provide behavior of a single copy of object:
— Read should return the most recent write

— Subsequent reads should return same value, until next write

» Telephone intuition:
1. Alice updates Facebook post
2. Alice calls Bob on phone: “Check my Facebook post!”

3. Bobread’s Alice’s wall, sees her post

Strong Consistency?

¢ write(A,1) &’
L
>

O v -~

[1
\ zead(A)\

>

Phone call: Ensures happens-before relationship,
even through “out-of-band” communication

Strong Consistency?

Strong Consistency? This is buggy!

¥ —— \:
SR
] —>

0 N
\ /:ead(A)\

¢ —r

One cool trick: Delay responding to writes/ops
until properly committed

¥ >
write(A,1)
D \ \” /success —>
[—>

—>

: 1
committed \
] read(A)

§—

 Isn’t sufficient to return value of third node:
It doesn't know precisely when op is “globally” committed

* Instead: Need to actually order read operation s

Strong Consistency!

write(A,1)
success

WK
[:] >
ST e

- 1
/‘ead(A)\
| —>

Order all operations via (1) leader, (2) consensus

Strong consistency = linearizability

* Linearizability (Herlihy and Wang 1991)
1. All servers execute all ops in some identical sequential order
2. Global ordering preserves each client's own local ordering

3. Global ordering preserves real-time guarantee
« All ops receive global time-stamp using a sync’d clock
o Iftsep1(X) < tsopa(y), OP1(x) precedes OP2(y) in sequence

» Once write completes, all later reads (by wall-clock start time)
should return value of that write or value of later write.

* Once read returns particular value, all later reads should return
that value or value of later write.

Intuition: Real-time ordering

\wrlte(A 1) /
success —
f\

E]

\/ \ / \1
[:

committed \ / read(A)\

* Once write completes, all Iater reads (by wall-clock start time)
should return value of that write or value of later write.

» Once read returns particular value, all later reads should return
that value or value of later write. "

Weaker: Sequential consistency

+ Sequential = Linearizability — real-time ordering
1. All servers execute all ops in some identical sequential order

2. Global ordering preserves each client’s own local ordering

» With concurrent ops, “reordering” of ops (w.r.t. real-time ordering)
acceptable, but all servers must see same order

— e.g., linearizability cares about time
sequential consistency cares about program order

Sequential Consistency

¢ \write(A,1) / &’
D success

\ —>
[\ >
() —>

0
i 4 Zead(A)\

In example, system orders read(A) before write(A,1)

13

Valid Sequential Consistency?

Tradeoffs are fundamental?

2PC / Consensus Eventual consistency

eesss——————

Paxos / Raft Dynamo

P1: W(x)a P1: Wix)a

pP2: W(x)b p2: Wix)b

P3: R(x)b R(x)a P3: R(x)b R(x)a
P4 R(x)b R(x)a P4: R(x)a R(x)b

* Why? Because P3 and P4 don’t agree on order of ops.

Doesn’t matter when events took place on diff machine,
as long as proc’s AGREE on order.

What if P1 did both W(x)a and W(x)b?

Neither valid, as (a) doesn’t preserve local ordering

“CAP” Conjection for Distributed Systems

» From keynote lecture by Eric Brewer (2000)

— History: Eric started Inktomi, early Internet search site based
around “commodity” clusters of computers

— Using CAP to justify “BASE” model: Basically Available, Soft-
state services with Eventual consistency

» Popular interpretation: 2-out-of-3
— Consistency (Linearizability)
— Availability

— Partition Tolerance: Arbitrary crash/network failures »

CAP Theorem: Proof

Not
consistent

Gilbert, Seth, and Nancy Lynch. "Brewer’s conjecture and the feasibility of consistent, available,

CAP Theorem: Proof

0 =
Not
available

Gilbert, Seth, and Nancy Lynch. "Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59. 18

partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59. 17
CAP Theorem: Proof
Not
partition
tolerant
Gilbert, Seth, and Nancy Lynch. "Brewer’s conjecture and the feasibility of consistent, available,
19

partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59.

CAP Theorem: AP or CP

Not

Criticism: It's not 2-out-of-3 partition
tolerant

» Can't “choose” no partitions
* So: APorCP iq

20

More tradeoffs L vs. C

* Low-latency: Speak to fewer than quorum of nodes?
- 2PC: write N, read 1
— RAFT: write [N/2] + 1, read [N/2]| + 1
— General: |W|+|R|>N

» Land C are fundamentally at odds

— “C” = linearizability, sequential, serializability (more later)

21

More linearizable

replication algorithms

PACELC

* If there is a partition (P):
— How does system tradeoff Aand C?
* Else (no partition)

— How does system tradeoff L and C?

* Is there a useful system that switches?
— Dynamo: PAJ/EL
- “ACID” dbs: PC/EC

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
22

Chain replication

» Writes to head, which orders all writes

» When write reaches tail, implicitly committed rest of chain
» Reads to tail, which orders reads w.r.t. committed writes

Chain replication for read-heavy (CRAQ)]

| Read Request | | Read Request | | Read Request | | Read Request |

* Goal: Ifall replicas have same version, read from any one

» Challenge: They need to know they have correct version

Chain replication for read-heavy (CRAQ)

AR
~

HEAD F - -> replica :- - —>

* Replicas maintain multiple versions of objects while “dirty”,
i.e., contain uncommitted writes

* Commitment sent “up” chain after reaches tail

Chain replication for read-heavy (CRAQ)]

|Write Request| I Dirty Read |

A)
'K, Vs]
~

HEAD F - -> replica

* Read to dirty object must check with tail for proper version

» This orders read with respect to global order, regardless of
replica that handles

Performance: CR vs. CRAQ

o o CRAQ-7
g | 7 5 CRAQ-3
= IXERY: A C
0 %%%%%%%%% R-3
i I
o 3
u O
O o
[0 >
(&)
- o 3x T b g &
§* @@@i@iii@i@@@m F
1x-&m&ﬁs&&&m&mﬁkmﬁxéié A A AA iy
e T T T T T T
0 20 40 60 80 100
Writes/s

R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput and availability. OSDI 2004.
J. Terrace and M. Freedman. Object Storage on CRAQ: High-throughput chain replication for read-mostly workloads. USENIX ATC 2009. 28

Wednesday lecture

Causal Consistency

