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Thus far in the course: Learning from labeled examples.   (SUPERVISED LEARNING) 
Today: Learning from lots of unlabeled/unannotated data. (UNSUPERVISED LEARNING)

e.g., to understand structure of  language,  
computer can try to go through a big text corpus. 

(Will also continue with this theme next time.) 



What can you learn by just reading? 

1) Syntax

Problem 1: His grammar is highly ambiguous 
Problem 2: Binary notion of grammatical/ungrammatrical; 
 no notion of likelihood. (Fixes exist, but..) Possible to learn basic grammar  

from reading alone; won’t do today.

Mathematical description!



Ambiguity: multiple syntactic interpretations of same 
sentence

“Time flies like an arrow.” 

Figure credit: Bill DeSmedt

Several other parsings; try to find a few… !!Ambiguities of all kinds are a  
fact of life in computational linguistics; 
won’t study in this course.



This lecture:  
Simple, even naïve approach to language modeling



Probabilistic model of language
• Assigns a probability to every word sequence (grammatical or 

not)  
P[w1 w2 w3 … wn] 

Typical Use: Improve other language processing tasks:
• Speech recognition  

  “I ate a cherry” is a more likely sentence than “Eye eightuh 
Jerry” 

• Machine translation.  
 Pr[high winds tonight] > Pr[large winds tonight] 

• Context sensitive spelling correctors 
“Their are problems wit this sentence.”  

• Sentence completion  
 “Please turn off your ….”

Related: P(w5|w1,w2,w3)       “conditional probability of w5  after w1,w2,w3 ”



Philosophical debate!
 Ludicrous to think of 
“Probability of a 
sentence.” 

!
“Colorless green ideas sleep furiously.” 

“Sentence probability” is clearly culture 
and speaker dependent. But is 
approximate   way to measure likelihood 
of usage.  Useful!

This sentence had nonzero 
probability, as shown by the fact 
that you uttered it.

Chomsky

Peter Norvig



Bayes Rule/Chain Rule

• Recall definition of conditional probabilities 
 
P(AB) = P(A) P(B|A) 
!

• More variables: 
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) 

• The Chain Rule in General 
  P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)



Example of applying Chain Rule

!!

€ 

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

P(You like green cream) = P(You)P(like | You) P(green|You like) P(cream|You like green) 



Actually estimating probabilities from a text corpus
P(You like green cream) = P(You) P(like | You) P(green|You like) P(cream|You like green)

How can we estimate these probabilities empirically? 

   

P(cream|You like green) =

 

 

Not enough data!!



Sparse data problem

V = # of words in Oxford English dictionary = 2 x 106

Number of pairs of words = V2 =4 x 1012   (4 Trillion) 

Number of triples of words = V3 =8 x 1018  (exceeds worldwide data storage) 

Neither enough data nor storage to  
train the language model we desire.

Must settle for approximation! 



Simplest approximation: unigram

!!

€ 

P(w1w2…wn) ≈ P(wi )
i
∏

P(“You like green cream”)≈  P(“You”)P(“like”)P(“green”)P(“cream”) 

Overestimates probability for this rare sentence 
since all words in it are fairly common. 
(remember Chomsky’s critique!)



Bigram Model: Prob of next word depends  
only on last word.

!!

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

P(“You like green cream”)≈  
P(“You”)P(“like”|”You”)P(“green”|”like”)P(“cream”|”green”) 

Contrast with full chain rule:  
P(You like green cream) = P(You)P(like | You) P(green|You like) P(cream|You like green) 

Insufficient data to even train the full bigram model; 
V2 is too large. Let’s return to this later.

This is small, which 
lowers probability 
of this sentence. 

(But still too high.) 



Jargon map 
!
Unigram:  single word 
Bigram: Adjacent pair of words 
Trigram: Adjacent Triple of words

Sanity check:  

Number of bigrams in a sentence of length N?  
!
Number of trigrams in a sentence of length N? 

N-1

N-2



Google n-gram dataset

(Play with n-grams data at https://books.google.com/ngrams)

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html


Aside: Markovian Models

A. A. Markov

Sequential models for with limited memory of past. 

K-th order model : Prob. of next symbol depends  
  only upon last K-symbols.  
(rough definition!)

K=0 ➔ Unigram;  K =1 ➔ Bigram.

(Chomsky):  Language is not markovian; long-range dependencies. 
(i.e., no finite K suffices )

”Bulldogs Bulldogs Bulldogs Fight Fight Fight”! 

(Get it? E.g., Bulldogs that bulldogs fight, fight.) 



Next few slides: A worked-out example from D. Jurafsky, Stanford 
!
(data from Berkeley Restaurant Project)



• can you tell me about any good cantonese restaurants 
close by 

• mid priced thai food is what i’m looking for 
• tell me about chez panisse 
• can you give me a listing of the kinds of food that are 

available 
• i’m looking for a good place to eat breakfast 
• when is caffe venezia open during the day

Berkeley restaurant project: Sample queries from users



Raw bigram counts



Converting to probabilities

€ 

P(wi |wi−1) =
count(wi−1,wi )
count(wi−1)

Estimation rule
Bigram

Unigram

Unigram  
frequencies

Result



Customary to pad each sentence with  ”start” <s> and “end” </s>  symbols

Reasons:  
!
(Theoretical) Ensures that  sum of probabilities of  all (infinitely many) sentences is 1.       
      Optional: Convince yourself of this. 
(Practical): Allows us to talk about the probability that say “You” starts a sentence. 
  (Unigram Pr(You) does not capture this.)  
   

Implementation note for n-gram models

You like green cream  !  <s> You like green cream </s>



Estimation of probability of sentence

P(<s> I want english food </s>) = 
 P(I|<s>)    
  ×  P(want|I)   
 ×  P(english|want)    
 ×  P(food|english)    
 ×  P(</s>|food) 
       =  .000031

NB: Do everything in log space 
• Avoid underflow 
• (also adding is faster than multiplying)

log(p1 × p2 × p3 × p4 ) = log p1 + log p2 + log p3 + log p4



“Knowledge” captured by model parameters

• P(english|want)  = .0011 
• P(chinese|want) =  .0065 
• P(to|want) = .66 
• P(eat | to) = .28 
• P(food | to) = 0 
• P(want | spend) = 0 
• P (i | <s>) = .25



Next few slides: How to evaluate language models 
 (“Perplexity”)



Evaluating Language Models

• Does our language model give higher probability to 
good sentences  (“real” or “frequently observed”)  
compared to bad ones?  

• Methology:  
  (a) Train model on a training set.  
  (b) Test model’s performance on previously 
unseen  data (test set)  
   (c) Have evaluation metric to quantify how well 
our  model does on the test set.

Popular evaluation metric: Perplexity score given by the model to test set.

Note: Analogous 
to methology  
for supervised  
learning



Perplexity: Intuition

• The Shannon Game: 
• How well can we predict the next word?  

!
!

• Unigram models terrible at this game. (Why?) 

I always order pizza with cheese and ____ 
The 33rd President of the US was ____ 
I saw a ____

mushrooms 0.1 

pepperoni 0.1 

anchovies 0.01 

…. 
fried rice 0.0001 

…. 
and 1e-100

Model is better if in the test data it assigns higher probability to word 
that actually occurs.



Perplexity definition

Perplexity is the inverse probability of the 
test set, normalized by the number of words: 

!
                                          
 
 
     
  Chain rule: 

 

                                             
 
  For bigrams:

PP(W) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N

(NB: Minimize Perplexity ! Maximize probability of the sentence.)



Sanity Check

Consider a sequence consisting of random letters 
What is the perplexity of this sentence according to 
a model that assign prob. 1/26 to each letter?

PP(w1 w2 … wN)  =    

= 26.

Moral: PP() measure makes sense for arbitrarily long sentences. 



Low perplexity = Better Model
!

• Training 38 million words, test 1.5 million words, 
WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexi
ty

962 170 109



Language model gives a language generator
• Choose a random bigram  

     (<s>, w) according to its probability 

• Now choose a random bigram        (w, x) 
according to its probability 

• And so on until we choose </s> 

• Then string the words together

<s> I 
    I want 
      want to 
           to eat 
              eat Chinese 
                  Chinese food 
                          food  </s> 
I want to eat Chinese food 



N-gram approximations to Shakespeare

Sucketh



Why this even works (sort of)

• N=884,647 tokens, V=29,066 
• Shakespeare produced 300,000 bigram types out of 

V2= 844 million possible bigrams. 
• So 99.96% of the possible bigrams were never seen 

(have zero entries in the table) 

• Quadrigrams worse:   What's coming out looks like 
Shakespeare because it is fragments of 
Shakespeare

Overfitting???  Will a model learnt using Shakespeare be any good 
for Dickens? 



Wall Street Journal ≠  Shakespeare



Suppose some bigram doesn’t appear in training data,  
 but it appears in some sentence in test data. 
What perplexity does the bigram model give to this sentence? 

P(sentence) = 0. 
!
➔ Perplexity =   1/0   =  ∞



Example of a more general issue in finite sampling
You arrive in a new country with N people, and ask  5 randomly chosen people their  
names: They are  Joe, Shmoe, Doe, Roe, and Moe. 

“Maybe all people in this country are called  
Joe/Shmoe/Doe/Roe/Moe” 

“Maybe every person has a different name, 
and I got a random sample of  5 of them. “

Statisticians assign probabilities in such cases using Bayesian priors (won’t do it today)

“Smoothing trick”: Reduce probability estimate of seen events; increase for unseen 
events. 



Add-one smoothing (aka Laplace smoothing)

• Pretend we saw each word one more time than we did 
• “Add 1 to all bigram counts, and V to all unigram counts.” 
!

• Old estimate:  
!

• Add-1 estimate:

PMLE(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi )+1
c(wi−1)+V

NB: For every word w, this doesn’t affect  ∑i  P(wi | w)      
(so we still have a proper distribution)  

Many other smoothings 
invented :  Good-Turing, 
Kneser-Ney, etc. 



Advanced topic: Neural language models 
(great progress in machine translation, question answering etc.)

Basic idea: Neural network 
represents language model 
but more compactly  
(fewer parameters).  

Training objective resembles perplexity 
“Given last n words, predict the  
next with good probability.”  



Next time: Attempts to capture semantics (meaning of words, sentences etc.) 
!
 (Vector-space models; also unsupervised learning)


