
Lecture 8: Introduction to Deep Learning: Part 2

(More on backpropagation, and ConvNets)

Sanjeev Arora Elad Hazan

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:
AAAAAAAA

COS 402 – Machine

Learning and
Artificial Intelligence

 Fall 2016

Recap: Structure of a deep net

• ”Circuit” of gates connected by wires.
• Each wire has a weight on it.
• Each gate computes a simple nonlinear function,

which is applied to weighted sum of incoming
signals.

weight

Each gate first computes weighted sum of
incoming signals, then applies nonlinear function on it.

Basic structure of a deep net:
(contd)

More popular nonlinearities:
• Rectifier Linear Unit (“RELU”).
• Sigmoid (soft threshold)

• ”Circuit” of gates connected by wires.
• Each wire has a weight on it.
• Each gate computes a simple nonlinear function,

which is applied to weighted sum of incoming
signals.

The optimization problem

• N inputs x1, x2,.., xN in Rd, labeled with
values y1, y2,…, yN in {0,1}

• Experimenter decides on # of layers, # of
nodes in each, and the nonlinearity type.

• (W, A) = Vector of unknowns.
(Weight of each wire, and “bias” of each node.)

fW, A (x) = output of this net on input x.

Minimize over (W, A):
∑i (fW, A (xi) – yi)

2

fW, A (x)

+ Regularizer(W, A)

Typical choice of regularizer = sum of squares of entries of W.

Rd

Distribution over
vectors
{x} ∈ 𝑅𝑛

Output is 𝑓𝑊,𝑎 𝑥

Chair/car

(W, a)= Weights
and Biases
of network
nodes (in

vector form)

Landcape of training objective

Minimize over (W, A):
OBJECTIVE(W, A) = ∑i (fW, A (xi) – yi)

2

W, A

Gradient calculation as message passing

Imagine: On each node, one little green man
doing some computation.

Desired: At the end, each edge knows
where w is its weight, and f is the function at
the last layer.

(NB: Green men = Inner loop of some program)

Goal:

Work per node = O(# of adjacent edges).
 Total work by all green men = O(Network Size).

Simple inductive algorithm to compute
∂y/ ∂w1 for all nodes y in the network.

Work per node = O(# incoming wires);
 Total work is O(network size).

Repeat for all w1 Overall

work becomes O((network size)2)

Pattern of operations is
identical for different wi’s:
consolidate!
(i.e., dynamic programming)

Improve work to O(Network size) ?

Main idea: Message passing (each message is a real #)

Backprop Algorithm:

V1 u1

w1

Layer (k-1) Layer k

Message from v1 to u1 =

Backprop. Lemma: This rule satisfies for any node vi:

(NB: Amount of work at v1 = O(# of nodes it is adjacent to))

Next few slides:
Proof of this claim: By induction on (#layers –k) (NOT k)

Green man
at v1 can
compute

this locally.

Main ingredient: ”Network Chain Rule”

u V1
f

V2

Vm

Node f depends on u only through v1, v2,.. vm

Circuit

Every path from u
to f passes through

one of the vi’s

Level (k-1) Level k

Proof of ”Network Chain Rule”

u V1
f

V2

Vm

Node f depends on u only through v1, v2,.. vm

Circuit

Every path from u
to f passes through

one of the vi’s

Level (k-1) Level k

Thought experiment:

Then for each i:

So

QED

 Claim is true for level k-1!

Backprop Lemma (proof by induction)

u1 V1
f

V2

Vi

Node f depends on u only through v1, v2,.. vm

Circuit

Every path from u
to f passes through

one of the vi’s

Level (k-1) Level k

Inductive claim for level k

()

 How to connect to training objective (notes from
tablet)

(more tablet notes: how to get partial
derivative wrt network parameters)

Can similarly compute partial derivative wrt bias parameter

Some Implementation details

• Recall SGD: use random index i and use that xi to compute estimate of gradient

• Better: In each iteration, estimate gradient using random sample of d inputs. “Batch”
(typically power of 2 in [16, 256]).
 Motivations:
 (Theoretical) Avg. of a few samples gives more accurate sample of
 gradient (lower variance)
 (Practical) On many architectures ---eg GPUs– doing d=2k identical operations is not much
 more expensive than a single one.

• Let the “learning rate” drop a bit each iteration.

 (Rule of thumb: Inversely proportional to # of iterations.)

Minimize over (W, A):
∑i (fW, A (xi) – yi)

2 + Regularizer(W, A)

The output layer

• If desired output is 0/1 then use sigmoid gate at the output

• If output is in {1, 2, 3,.., m} (i.e., multiclass classification)
then use m sigmoids at the output layer.

Now output of deep net = fW,A(x) = a vector in [0,1]m

Possible training objective:

∑i (fW, A (xi) – yi)
2

Where yi is a unary representation of output.
(Number i is represented as 000010…000)

i

Better :
∑i cross-entropy(fW, A (xi), yi)

Convolutional Neural Nets (aka “Convnet”)
 ----- useful in image recognition, language models, etc.
 [LeCun et al’98]

Generic way to reduce # of parameters in the neural net
(leverages special structure of images, text etc.)
(Motivated by neuroscience studies of Visual Cortex V1)

Key component in nearly all successful deep learning in recent years.

Sanity Check: Why is it good to reduce # of network parameters?

Better generalization! (Training uses fewer samples)

Ptolemaic model of solar system
(with complicated “epicycles”)

Correct model with Sun at center; planets
In elliptical orbits. [Copernicus, Kepler]

MORAL: WITH SUFFICIENT # PARAMETERS,
INCORRECT MODEL FITS DATA TOO.

Main Idea in Convolution Net: A Local Filter/Feature

“Multiply each pixel value
by -4 and add to it values of
neighboring pixels.”

Nonzeroes whereever neighboring pixels
have v. different values (“Edge Detector”)!

Many other useful filters were designed (“AI by introspection”)

ConvNets try to learn filters from data directly. (Above filter is 3x3 matrix; only 9 parameters!)

The philosophy

• A layer consists of M types of filters, each of which is k x k (e.g., k =5)
Filter is applied in every kxk window. (Sometimes, every 2nd or
every 3rd window; determined by “stride” parameter.)

• Inputs to each layer are outputs of filters of prev. layer.

• And so on…

At the end of the day, it is just a
deep net with special connection
structure; trained using backprop.

Convolution
v. fast on GPUs.

Convolution: two dimensional case

a b c d

e f g h

i j k l

w x

y z

bw + cx +
fy + gz

wa + bx +
ey + fz

Kernel/filter Input

Feature map
(Obtained by

sliding same filter
across all 2x2
“windows”)

we + fx +
iy + jz

(Stride =2 Apply filter every 2nd pixel.)

Apply to all k x k “windows”

”Max Pooling”

Divide into 2x2 windows;
replace each by max of its
4 values

Shrink
feature
map by 4x

Same architecture at all layers. (Sometimes throw in some fully connected layers at the top.)

N x N

k x k

Roughly N x N

Clarification on how to use backprop to train convnets

This formula shows
how to “pool” the
gradient from the
multiple occurences
of this parameter.

Going further in deep nets.

• Mechanisms to allow many layers; even 100+ . (Gradient gets noisier as it is
backpropagated through more layers!)

• Modifications of gradient descent that allow deep nets with
feedback connections (output of higher layer feeding into lower layers)
“Recurrent Neural Nets”

• Deep nets with memory: e.g. Long-Short Term Memory nets (LSTMs)

• Ways to compose different deep nets automatically; use backprop
to propagate gradient across the interface.

• Practical tools such as autograd, tensorflow, Caffe,..

(Look for ugrad deep nets course in spring.)

