probabllltles v
Siplans - %b—c .
Orepresentatlo 9 ﬁ'%""”"“"‘ COS 402 — Machine
b n .
*ésuperwsded—o C0g & Learning and
S, oemdentS £5 3 |
=g =k ¢ H A8 g0 Artificial Intelligence
v
b i - e Fall 2016
o % ;_‘semantlcs
<
O,_.,O 8 COS 402: Artificial Intelligence

and Machine Learning

1

Lecture 8: Introduction to Deep Learning: Part 2
(More on backpropagation, and ConvNets)

Sanjeev Arora Elad Hazan

¥ PRINCETON
UNIVERSITY

Recap: Structure of a deep net

“Circuit” of gates connected by wires.

Each wire has a weight on it.

Each gate computes a simple nonlinear function,
which is applied to weighted sum of incoming
signals.

hidden layers

output layer

input laver {

Each gate first computes weighted sum of
incoming signals, then applies nonlinear function on it.

Basic structure of a deep net

\ N
% SUM Oulput
(contd) @~ g
* "Circuit” of gates connected by wires. ;' " / (Nonl(nea“bj

 Each wire has a weight on it.
 Each gate computes a simple nonlinear function,

which is applied to weighted sum of incoming
signals. : '
& ReLU willh 57019 @) i
e 57
{O ; 8= A)2

: .. ;] A5
More popular nonlinearities: 2
e Rectifier Linear Unit (“RELU”).
« Sigmoid (soft threshold) : [71&5 q
SIGMO1D. it 14 . _

The optimization problem

* Ninputs Xy, X,,.., Xy in RY, labeled with _
valuesy,, Y,,..., Yy in {0,1} hidden layers
* Experimenter decides on # of layers, # of ' ‘ '
NS4

nodes in each, and the nonlinearity type.

* (W, A) = Vector of unknowns.
(Weight of each wire, and “bias” of each node.) i,put 1ayer |

fw, a (X) = output of this net on input x. "
Minimize over (W, A):
2, (fw, A (%) =V:)? + Regularizer(W, A)

Typical choice of regularizer = sum of squares of entries of W.

Minimize over (W, A):
OBJECTIVE(W, A) =3, (fy, 4 (X)) — vy)?

Landcape of training objective

A
el " "
q

e\ N\ 0' Y
NS\ SN A0
NS\ (5N
NN OO 0135 e
NSNS
NN S tyerssss a0,
\\\\x‘&}:‘.‘x\%&‘s\\\\&h&\W'va =
RN
N \\t\\i\g\\\\\\s\&{(\\'\'@@% s %,
MIMRY 00 200524
NN 255
AN =

NI &
s

2SN
4..

Distribution over
vectors

{x} e R"

A
SOSSSSSSS IS oSS X,
m%%:.‘.ooo%%“
CSEIISESSIISISISITICIK X >
(s

SIS
S e
ST S IOSNSISS
RS <4
22 7

Chair/car

{
X078

Output s fiy o (x)

(W, a)= Weights
and Biases

of network
nodes (in
vector form)

Gradient calculation as message passing

Imagine: On each node, one little green man : hidden layers
doing some computation. B

0 S
Desired: At the end, each edge knows 8—1{; \}{"N
where w is its weight, and f is the function at '
the last layer.

output layer

input layer

Goal:

Work per node = O(# of adjacent edges). ‘ . i i

=>» Total work by all green men = O(Network Size).

(NB: Green men = Inner loop of some program)

Tt Foia

> 58,75

Main idea: Message passing (each message is a real #)

N

J

™)

Y, 077

Y3
@yﬂi
(of it

oY +
“

[aﬁcr ¢+

*—A,OZL

3(4/1

)

Simple inductive algorithm to compute
dy/ dw, for all nodesy in the network.

Work per node = O(# incoming wires);
=» Total work is O(network size).

Repeat for all w, =» Overall
work becomes O((network size)?)

~ 6’(0(:3\'}‘0(7— j?-_}_ B ij)
\j = @ Improve work to O(Network size) ?
o o) ¥

N

Pattern of operations is
identical for different w/s:
consolidate!

(i.e., dynamic programming)

/" Green man
at v, can
compute

this locally.
|
Message from v, tou, = i
W ﬁ
u 1 V, . : vy
! q Sum of all its incoming messages X

Backprop Algorithm:

| | (3’u1

|
' |
: I (NB: Amount of work at v, = O(# of nodes it is adjacent to))

L k-1 Layer k
ayer (k-1) Y Backprop. Lemma: This rule satisfies for any node v;:
. 0
Sum of messages received by v; = af
(%)

Next few slides:
Proof of this claim: By induction on (#layers —k) (NOT k)

Every path from u A
to f passes through
one of the vs

Main ingredient: “Network Chain Rule”

' Node f depends on u only through v,, v,,.. v J
L

) Z 0f v

| ov; Ou

Level (k-1) Level k

Proof of “Network Chain Rule”

Level (k-1) Level k'

Every path from u A
to f passes through
one of the vs

Node f depends on u only through v,, v,,.. v J

Thought experiment:

u+— u+ Au

Then for each i:

v,
vi%vi—l—Au- Y
ou
of Ov;
So f%f—FZavl au'

QED

Every path from u
to f passes through

Backprop Lemma (proof by induction) e

~

)

' Node f depends on u only through v,, v,,.. v

Inductive claim for level k

Sum of messages received by v, =

6’1)7;
0%1
=» Claim is true for level k-1!

(Sum of all incomip€ messages at v;)x

_ N (%i 81&1

Level (k-1) Level k

)

How to connect to training objective (notes from
tablet) L o

! & ~ '
[05§85 = & 5 L0535 ZL‘ 3 [,-J?/*'f’,l
: 7 ; b
NC F e 72 V__/_ j P ,-/ ,x 4 't/d ,..{.\ .I
A S /) ; F LOE L o
Y prea i
- (P asVa \I Y [OAY 't PNIAaN S, 'uL.E?.
(._ 4 l \ p-—\ v /L - : | W {V v o) {‘.
e = (Y S 7 4 ks s £ G N 3
//"1/)'_,'9/14' 2{ Lloss (X, YWy)
ST A e \ & SR i
kC,.\',f ARE 4 g | eI . :
— s P ,'V;' B \/" :_ ~ |
Viia DS AT
J L
TR ™,
/-- \
h\ - » '
bl S /‘ \ S 7 7 'V(/. l_k /‘I
{-_. ‘_' ~ e \ ~ g L'— O E‘) oy |\ L §) 7 \J
1 s f ~ ./
ok D ol —O = glw, #
Aiq - : I O
1 / ' /(., Y,
ll = / K__ i ! VM !'f
el | /ﬁﬂ/ ‘A/{»_‘ . U“/t
= '/ IM ‘\ A Vo
f oS> |
e =B :‘l. =l i
"'."-V' (') {) 3,2 g ¥ ___)//\ p \

(more tablet notes: how to get partial
derivative wrt network parameters)

| N ; | l‘l [‘ 1% 'q
A - Al N VA
l' 2. é gsinulyi JOAUK r'f‘d .l” v

I i Y /"\' ol ‘ n (7 I\,} I:-1\I
’ 1..) f '.-rl L/&_/'l'\ /'H'\ t /"‘/l-" N l'/) =

T
I“ o~

!
----- e e (/.' \-,' S0
FE i T W,
-\ ~\ s
\.
l j - \"\ |
- 5 o ¢
| .:_m f - ¢ \\j \ ..f-'\ | N i
(D € P) i
|\'-. AN :‘n\l /‘ , O
| 2 A / forcd “ e " :
! " ol P : (;
'\ (Al .,.,/\'-; oS N '\),,,‘ = T |f \/ \ 't I
N B) B “". N DY, =) :] (<2 Y | |
9 T YT e T 7
/ = \ /\
<~y 57 34, ov A ;
e st - SO«
L D, ; % v foYvye| v 02N\ Pl il)
h..‘\‘ I'"\l b1 Z -\. 7 /2 L Ls T ;) %, .. dL 'D_. . \
2 p) Fast wotes NQR2 o |
g AL dtang ¢ | . Y w{ F)
|‘-",““l‘./:--v"f e b :‘Jl/.{) b,"\/ I“T—‘; IUL/{:J")&J\ ULJ S\’j Y _/)

Can similarly compute partial derivative wrt bias parameter

Some Implementation details

Minimize over (W, A):
i (fw A (%) —y;)> + Regularizer(W, A)

* Recall SGD: use random index i and use that x, to compute estimate of gradient

e Better: In each iteration, estimate gradient using random sample of d inputs. “Batch”
(typically power of 2 in [16, 256]).

Motivations:
(Theoretical) Avg. of a few samples gives more accurate sample of

gradient (lower variance)
(Practical) On many architectures ---eg GPUs— doing d=2% identical operations is not much

more expensive than a single one.

_r
° “ i 7 Aran A hit Ao ala o Lt . . c
Let the “learning rate” drepabitescicc—i— W W — - NE (F is obJectlve)}

(Rule of thumb: Inversely proportional to # of iterations.) T

The output layer

* |f desired output is 0/1 then use sigmoid gate at the output

* If outputisin{l, 2, 3,.., m}(i.e., multiclass classification)
then use m sigmoids at the output layer.

0
1
2
)
6/
ry
6
7
4
",

Now output of deep net = f, ,(x) = a vector in [0,1]™

Possible training objective: Better :
>; cross-entropy(fy, A (x), v;)

cross-entropy(z,y) = Z(yj Inz; + (1 —y;)In(1 — z;))
J

Zi (fv\/, A (Xi) - yi)2

Where y; is a unary representation of output. . o
(Number i is represented as 000010...000) y is 0/1 vector; z is real-valued
Y}

Linear Object
Convolutions Pooling Convs Classifier Categories / Positions

> { Q Tat (xiy)

a7 ratea

Input data

S2 feature maps | | 4 W%J‘l }at (xiyK)
. | — .'_,

C1 feature maps C3 feature maps

Convolutional Neural Nets (aka “Convnet”)
----- useful in image recognition, language models, etc.

_ _ [LeCun et al’98]
Generic way to reduce # of parameters in the neural net
(leverages special structure of images, text etc.)

(Motivated by neuroscience studies of Visual Cortex V1)

Key component in nearly all successful deep learning in recent years.

Sanity Check: Why is it good to reduce # of network parameters?

Better generalization! (Training uses fewer samples)

ONOAA

Correct model with Sun at center; planets
In elliptical orbits. [Copernicus, Kepler]

Pto

fith complicated “epicycles”) MORAL: WITH SUFFICIENT # PARAMETERS,
INCORRECT MODEL FITS DATA TOO.

aic model of solar sySdem

Main Idea in Convolution Net: A Local Filter/Feature

ok
-
ok

“Multiply each pixel value
by -4 and add to it values of
neighboring pixels.”

Nonzeroes whereever neighboring pixels
have v. different values (“Edge Detector”)!

Many other useful filters were designed (“Al by introspection”)

ConvNets try to learn filters from data directly. (Above filter is 3x3 matrix; only 9 parameters!)

The philosophy

* A layer consists of M types of filters, each of which is k x k (e.g., k =5)

Filter is applied in every kxk window. (Sometimes,

every 2" or

every 3" window; determined by “stride” parameter.)

* Inputs to each layer are outputs of filters of prev. layer.

* Andsoon...
Linear Object
Convolutions Pooling Convs Classifier Categories / Positions
»{ (=2 }at (xiy)
MG [rat)
{3 L[y at Gyl
W

C3 feature maps

At the end of the day, it is just a
deep net with special connection
structure; trained using backprop.

Convolution
v. fast on GPUs.

Convolution: two dimensional case

M\ / Kernel/filter

} Feature map
(Obtained by

we + fx + wa + bX + bW +CX + sliding same filter
iy +jz ey + fz fy + gz IS Ell 222

windows”)

(Stride =2 =» Apply filter every 2" pixel.)

~__—input NxN Roughly N x N

‘_.
feature map

/ filter kxk ”Max Pooling” Shrink

feature

Apply to all k x k “windows > map by 4x
> Divide into 2x2 windows;

replace each by max of its
4 values

Same architecture at all layers. (Sometimes throw in some fully connected layers at the top.)

Clarification on how to use backprop to train convnets

b a0 | I
2 A 7 » --l-' OCIAL {- { 'L/7h< S48 |I_\; A VA |‘.'*.,./1~Q/.;L§-» V' ON {Q_?_a S
VL AN e B T s 4 -
U 1 { 7 : = A DK
w2 0 , WY -\,
O oadh Aan Ak NLs -

"l/':"/\'.cj'\-/l/bé} \.)IJ

\. (e ",_
Ractepiro P

W T .ff,4zv-fv"“-">”v'/{’z/3
.. — “: |‘/.‘ ~'\\ s L {
|‘ . e L 7, - AL
V) Y 21 2
------- L=] : Y l‘].
) | \ / (‘ \/ 'C' \/ .
‘ tr oV, Y73 This formula shows
B s how to “pool” the
g "-}./' -~ { .
i) e 4 ' "N gradient from the
B FiaN b .
4 P—— b /57/‘/"‘ - “’f’_‘ . multiple occurences
A y { ; e i) e —f——F N .
N 1{’ ﬂﬁfgj/{/&./ﬂ (7 AR 7 W 2 gdldu of this parameter.
/ { I :l “.- sk /:j ‘ .z"\/' V l _,’- AR W :’ 3 g '-_,-.
o) ! 4 4N ¥ L 5 5
4" ; . thomn | & ki "X oV Jw o\, g/
| J M \jl.q { / 1 ‘I -+ C I‘/k}
Vil b l & \L'\J_ R ANty Yo ————— 2

Going further in deep nets.

 Mechanisms to allow many layers; even 100+ . (Gradient gets noisier as it is
backpropagated through more layers!)

* Modifications of gradient descent that allow deep nets with
feedback connections (output of higher layer feeding into lower layers)
“Recurrent Neural Nets”

e Deep nets with memory: e.g. Long-Short Term Memory nets (LSTMs)

* Ways to compose different deep nets automatically; use backprop
to propagate gradient across the interface.

* Practical tools such as autograd, tensorflow, Caffe,..

(Look for ugrad deep nets course in spring.)

