
Lecture 7: Introduction to Deep Learning

Sanjeev Arora Elad Hazan

• TexPoint fonts used in EMF.
• Read the TexPoint manual before you delete this box.:

AAAAAAAA

COS 402 – Machine
Learning and

Artificial Intelligence
 Fall 2016

(huge hype –some justified;
 dozens of startups)

Deep learning: What is it?
Motivation: Each node learns a “feature”;
depends upon lower level nodes.

• Trained using backpropagation algorithm.

• Training leverages highly parallel (vector)
operations possible on modern GPUs.

• Features learnt from data turn out superior to
hand-crafted features (“learning from data”
vs ”introspection” again)

Structure of a deep net:

Examples: Quadratic: f(s) = s2 .

Threshold function [Mccullough-Pitt 1943]
Ta(s) = 1 if s is positive;
 = -1 else.

• ”Circuit” of gates connected by wires.
• Each wire has a weight on it.
• Each gate first computes weighted sum of

incoming signals, then applies
some function on it.

Reminds you of something? What is a net
with a single threshold gate?

Hyperplane!

Network with one Threshold Gate.

Structure of a deep net (contd)

• ”Circuit” of gates connected by wires.
• Each wire has a weight on it.
• Each gate computes a simple nonlinear function,

which is applied to weighted sum of incoming
signals.

weight

Each gate first computes weighted sum of
incoming signals, then applies nonlinear function on it.

Basic structure of a deep net:
(contd)

More popular nonlinearities:
• Rectifier Linear Unit (“RELU”).
• Sigmoid (soft threshold)

• ”Circuit” of gates connected by wires.
• Each wire has a weight on it.
• Each gate computes a simple nonlinear function,

which is applied to weighted sum of incoming
signals.

Brief history of Deep Nets (aka “neural nets)

• Mccullough-Pitt 1943. Threshold gates as simple model for neurons.
(Today considered very simplistic.)

• Perceptron = network with single threshold gate.
• Backpropagation training algorithm rediscovered independently in many fields starting 1960s.

(popularized for Neural net training by Rumelhart, Hinton, Williams 1986)

• Neural nets find some uses in 1970s and 1980s.
• Achieve human level ability to read handwritten digits in 1990s.
• Dominant paradigm for computer vision by 2013 (exceeds human performance 2015)
• Little formal understanding why they work, but their success in various domains (vision, language,

speech etc.) has caused a frenzy (tech bubble? AI fears?)

How to train your deep net

Algorithm designer has in mind a class of models/classifiers

 Statistical Learning: Recap

Distribution D on all possible
inputs (in this case, images)

SAMPLING

N inputs x1, x2,.., xN in Rd, labeled with
values y1, y2,…, yN in {0,1}

Algorithm designer has in mind a class of models/classifiers
His Algorithm Fits best model in this class to the labeled data.

Under appropriate conditions, this model will
“generalize” to random unseen images from Distrib. D.

The optimization problem
• N inputs x1, x2,.., xN in Rd, labeled with

values y1, y2,…, yN in {0,1}

• Experimenter decides on # of layers, # of
nodes in each, and the nonlinearity type.

• (W, A) = Vector of unknowns.
(Weight of each wire, and “bias” of each node.)

fW, A (x) = output of this net on input x.

Minimize over (W, A):
∑i (fW, A (xi) – yi)

2

fW, A (x)

+ Regularizer(W, A)

Typical choice of regularizer = sum of squares of entries of W.

Rd

Chair/car

(W, a)= Weights
and Biases
of network
nodes (in

vector form)

Landcape of training objective

(W, a, obj(W,
a))

Recap: Gradient Descent

➔ To reduce f, take a tiny step along direction

If f is nonconvex, not guaranteed to
reach global minimum!

Multilayer net: how to compute
gradient

Main idea: Chain rule from calculus.

Recall:

Example:

Minimize over (W, A):
∑i (fW, A (xi) – yi)

2 + Regularizer(W, A) Want: Gradient of f() with respect to W, A

Backpropagation

Key points before we dive in (writeups on internet are very confusing!!)

(i) Want computation time O(1) per edge; i.e., O(Network Size) total.

(ii) Reason about correctness using induction.

(iii) We first see the trivial algorithm that runs in O((Network)2) time.
Backprop is more efficient version that uses special form of
nonlinearity.

Gradient calculation as message passing

Imagine: On each node, one little green man
doing some computation.

Desired: At the end, each edge knows
where w is its weight, and f is the function at
the last layer.

Ultimate Goal: Work done per node is
O(# of adjacent edges).

➔ Total work by all green men = O(Network Size).

Simple inductive algorithm to compute
∂y/ ∂w1 for all nodes y in the network.

Running time is O(network size).

To compute gradient, need to do this for
all network parameters w1, hence running
time is O((network size)2)

Main idea to improve:
Lots of identical operations in
above; consolidate!

Next lecture: (i) Finish backprop and details of training.
(ii) Using deep nets for computer vision (image recognition)

