probabilities %)0
gplannmg . — QT
Orepresentation & = B oinfor
; 2 5
*5superv1sec1:°g on: 3
mgradlentg ;:: g‘ Q
N sy 22
. . b <
- ﬁo ¥ s O
E' ‘Q_‘) 11 — 3
BE Emte 1 C
7. & Tsemantiesseare
O"?) 8 COS 402: Artificial Intelligence
y—={ and Machine Learning

COS 402 — Machine
Learning and

Artificial Intelligence
Fall 2016

Lecture 5: optimization and convexity

Sanjeev Arora

Elad Hazan

PRINCETON
UNIVERSITY



Admin

* Exercise 2 (implementation) next Thu, in class
* Exercise 3 (written), due next Thu

* Movie — “Ex Machina” + discussion panel w. Prof. Hasson (PNI)
Wed Oct. 4t 19:30
tickets still available @ Bella room 204 COS

* Next Tue: special guest - Dr. Yoram Singer @ Google



Recap

* Definition + fundamental theorem of statistical learning

* Powerful classes w. low sample complexity error exist (i.e. python
programs), but computationally hard

* Perceptron
* SVM



Agenda

e convex relaxations
* convex optimization
e Gradient descent



Mathematical optimization

Input: function f: K —» R, forK € R?
Output: pointx € K, suchthat f(x) < f(y)Vy€eK




Mathematical optimization

e Continuous functions (back to calculus,
derivatives, differentiability, ...)

* \/s. combinatorial optimization as in graph algorithms (strong
connection)

* Studied since early 1900’s , lots of work in soviet union
(central optimization, resource allocation, military applications, etc.)

 Special cases: linear programming, convex optimization, max flow in
graphs

Efficient (poly-time)
algorithms




Optimization for linear classification _@

Givena sample S = {(x{, V1), .., (X;, Vi) }, find " e %, "o
hyperplane (through the origin w.l.0.g) such that: @

W = arg min # of mistakes
lw|<1



Optimization for linear classification _@




Minimization can be hard




Sum of signs = hard




Convex functions: local = global

Sum of convex functions = also convex



Convex relaxation for 0-1 loss

g. - —— Misclassification
—— Exponential
o - Binomial Deviance
a7 —— Squared Error
——  Support Vector
=t
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Convex relaxation for linear classification _@

w=argmin|{i s.t.sign (w'x;) # y}| o :
Wil

W = arg |mlin1 £(wx;,y;) such as:
W=

1. Ridge / linear regression?(w'x;,v;) = (WwTx; — y;)*
2. SVM £(w'x;,y;) = max{0,1 —y; w'x;}
3. Logistic regression f(w'x;,y;) = log(1l+ ewai)




Small recap

* Finding linear classifiers: formulated as mathematical optimization
e Convexity: property that allows local greedy algorithms
* Formulate convex relaxations to linear classification

Next:
 Algorithms for convex optimization



Convexity

A function f: R% » R is convexif and only if:

1 1 1 1
F(5x+37) S 3FE+3fO)

* Informally: smiley ©




Calculus reminder: gradient

e Gradient=the direction of

steepest descent, which is the
derivative in each coordinate:

9,

—|Vf(z)]; = _ﬁ—atif(x)




Convexity

e Alternative definition:

f(y) = f(x) + Vf () ' (y — x)

(assumes differentiability, o/w subgradient)
(another alternative: second derivative is
non-negative in 1D)



Greedy optimization: gradient descent

* Move inthe direction of steepest
descent, which is:

VI @) = 5 (@)

Xep1 < X — NV (xt) /’
.y

“step size” or “Learning rate”



gradient descent — constrained set

Yer1 < X =NV (xe)
Xep1 = argmin|yg,, — x|




convex constraints

Set K is convexif and only if:

x,y€EK = (Y¥2x+%y) €K




gradient descent — constrained set

Let:

e G =upperboundon norm of gradients
Verr < Xe —nVf(xe)

vV <G .
V7ol < Xes1 = argmin |y, , — x|
XeEK

e D =diameter of constraint set
Vx,yeEK . |[x—y|<D

Theorem:for step size n = GL\/T

1 DG
f (72%) = i SO+ g7

t



Proof: Yerr < X =NV (x,)
1. Observation 1: Xt41 — dI'8 r)?ell? |Ver1 — X

|x* — Yt+1|2 = |x* — Xt|2 —2nVf(xe) (e —x7) + |l7f(xt)|2
o. Observation 2:

*

1X* — X411 S |X* — yegql?

This is the Pythagorean theorem:




Proof:
1. Observation 1:
X" = Y1 ? = X* = %[> = 20V (x0) (e — x7) + |Vf (x)1?
2. Observation 2:
X* — xp41 1> S X = Y4 l?
Thus:
X" = Xeg1 |2 S X = x¢|? = 20V f () (xp — x*) + G?

And hence:

1 1 1
f(fz xe) —f(x*) < TE[f(xt) —f(x")] < TZ Vi) —x)
t T t




gradient descent — constrained set

Theorem: for step size 11 = GL\/T

/(2 = g rr +

t

ZGZ

Thus, to get e-approximate solution, apply gradient

iterations.

€2



GD for linear classification A _@

: - o
= arg min ;Z wTxy) 0 S

1. Ridge / linear regression £(w'x;,y;) = (W'x; — y;)?
2. SVM f(w'x;,y;) = max{0,1 —y; w'x;}
3. Logistic regression L(w'x;,y;) =log(1+ eWTxi)



GD for linear classification A _@

= arg min gz twiay) ° A °

@
1 , °
Wtr1 = We — Uazf (W' X, ¥:)x; @
i

* Complexity? iterations, each taking ~ linear time in data set

62

* Overall 0 ( ) running time, m=# of examples in Rd

* Can we speed it up??



Summary

* Mathematical optimization for linear classification
* Convexrelaxations
* Gradient descent algorithm

* GD applied to linear classification



