

COS 402 – Machine Learning and Artificial Intelligence Fall 2016

Lecture 22

Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

How to balance exploration and exploitation in reinforcement learning

- Exploration:
 - try out each action/option to find the best one, gather more information for long term benefit
- Exploitation:
 - take the best action/option believed to give the best reward/payoff, get the maximum immediate reward given current information.
- Questions: Exploration-exploitation problems in real world?
 - Select a restaurant for dinner

— ...

Balancing exploration and exploitation

- Exploration:
 - try out each action/option to find the best one, gather more information for long term benefit
- Exploitation:
 - take the best action/option believed to give the best reward/payoff, get the maximum immediate reward given current information.
- Questions: Exploration-exploitation problems in real world?
 - Select a restaurant for dinner
 - Medical treatment in clinical trials
 - Online advertisement
 - Oil drilling

What's in the picture?

Picture is taken from Wikipedia

• A gambler is facing at a row of slot machines. At each time step, he chooses one of the slot machines to play and receives a reward. The goal is to maximize his return.

A row of slot machines in Las Vegas

- Stochastic bandits
 - Problem formulation
 - Algorithms
- Adversarial bandits
 - Problem formulation
 - Algorithms
- Contextual bandits

- Stochastic bandits:
 - K possible arms/actions: $1 \le i \le K$,
 - Rewards $x_i(t)$ at each arm i are drawn iid, with an expectation/mean u_i , unknown to the agent/gambler
 - $x_i(t)$ is a bounded real-valued reward.
 - Goal : maximize the return(the accumulative reward.) or minimize the expected regret:
 - Regret = $u^* T \sum_{t=1}^T E[x_{i_t}(t)]$, where
 - u* =max_i[u_i], expectation from the best action

Multi-armed bandit problem: algorithms?

- Stochastic bandits:
 - Example: 10-armed bandits
 - Question: what is your strategy? Which arm to pull at each time step t?

Multi-armed bandit problem: algorithms

- Stochastic bandits: 10-armed bandits
- Question: what is your strategy? Which arm to pull at each time step t?
- 1. Greedy method:
 - At time step t, estimate a value for each action
 - $Q_t(a) = \frac{sum \ of \ rewards \ when \ a \ taken \ prior \ to \ t}{number \ of \ times \ a \ taken \ prior \ to \ t}$
 - Select the action with the maximum value.

•
$$A_t = \underset{a}{\operatorname{argmax}} Q_t(a)$$

- Weaknesses?

Multi-armed bandit problem: algorithms

- 1. Greedy method:
 - At time step t, estimate a value for each action
 - $Q_t(a) = \frac{sum \ of \ rewards \ when \ a \ taken \ prior \ to \ t}{number \ of \ times \ a \ taken \ prior \ to \ t}$
 - Select the action with the maximum value.

•
$$A_t = \underset{a}{\operatorname{argmax}} Q_t(a)$$

- Weaknesses of the greedy method:
 - Always exploit current knowledge, no exploration.
 - Can stuck with a suboptimal action.

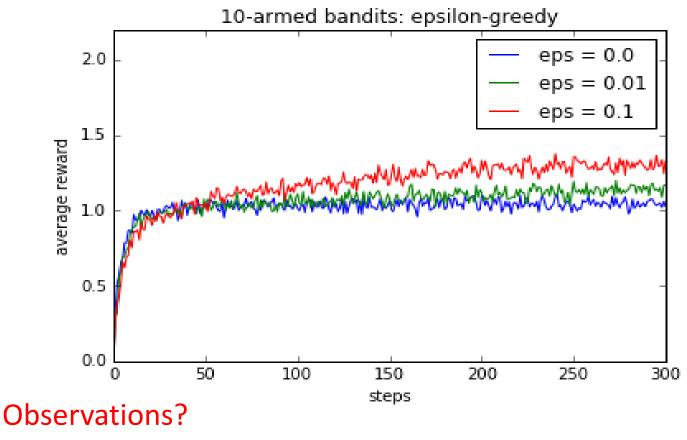
Multi-armed bandit problem: algorithms

- 2. *ɛ*-Greedy methods:
 - At time step t, estimate a value for each action
 - $Q_t(a) = \frac{sum \ of \ rewards \ when \ a \ taken \ prior \ to \ t}{number \ of \ times \ a \ taken \ prior \ to \ t}$
 - With probability 1- ε , Select the action with the maximum value.
 - $A_t = \underset{a}{\operatorname{argmax}} Q_t(a)$
 - With probability ε , select an action randomly from all the actions with equal probability.

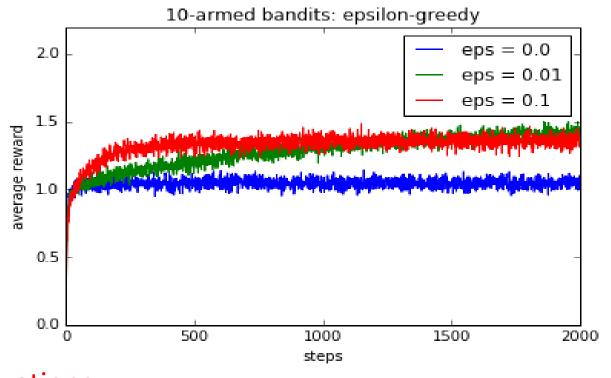
Experiments:

- Set up: (one run)
 - 10-armed bandits
 - Draw u_i from Gaussian(0,1), i = 1,...,10
 - the expectation/mean of rewards for action i
 - Rewards of action i at time t: $x_i(t)$
 - $x_i(t) \sim Gaussian(u_i, 1)$
 - Play 2000 rounds/steps
 - Average return at each time step
- Average over 1000 runs

Experimental results: average over 1000 runs

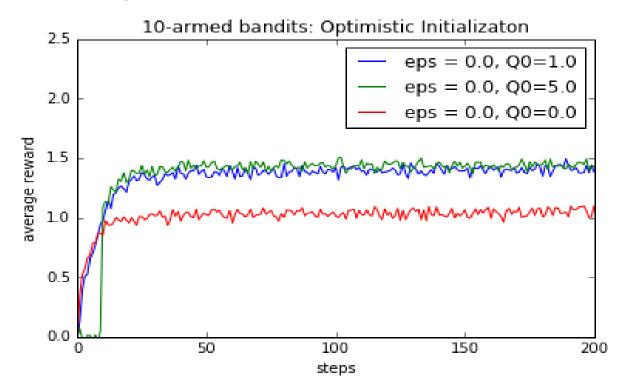


What will happen if we run more steps?

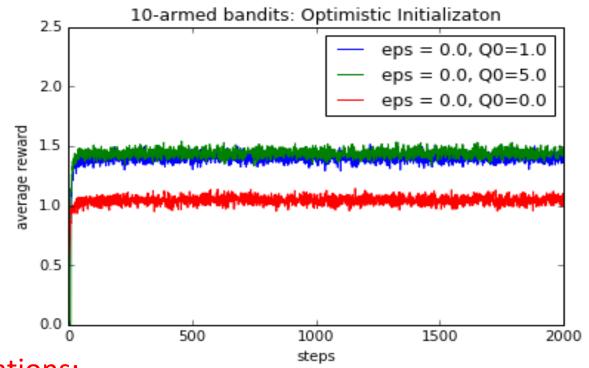


- Greedy method improved faster at the very beginning, but level off at a lower level.
- ε- Greedy methods continue to Explore and eventually perform better.
- The $\varepsilon = 0.01$ method improves slowly, but eventually performs better than the $\varepsilon = 0.1$ method.

Improve the Greedy method with optimistic initialization

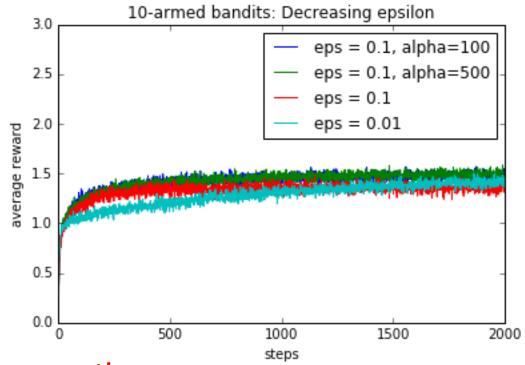


Greedy with optimistic initialization



- Big initial Q values force the Greedy method to explore more in the beginning.
- No exploration afterwards.

Improve ε -greedy with decreasing ε over time



Decreasing over time:

- $\varepsilon_t = \varepsilon_t * (\alpha)/(t+\alpha)$
- Improves faster in the beginning, also outperforms fixed ε -greedy methods in the long run.

Weaknesses of *ε*-Greedy methods:

• *ε*-Greedy methods:

- At time step t, estimate a value $Q_t(a)$ for each action
- With probability 1- ε , Select the action with the maximum value.
 - $A_t = \underset{a}{\operatorname{argmax}} Q_t(a)$
- With probability ε , select an action randomly from all the actions with equal probability.

• Weaknesses:

Weaknesses of *ε*-Greedy methods:

• *ε*-Greedy methods:

- At time step t, estimate a value $Q_t(a)$ for each action
- With probability 1- ε , Select the action with the maximum value.
 - $A_t = \underset{a}{\operatorname{argmax}} Q_t(a)$
- With probability ε , select an action randomly from all the actions with equal probability.

• Weaknesses:

- Randomly selects a action to explore, does not explore more "promising" actions.
- Does not consider confidence interval. If an action has been taken many times, no need to explore it.

Upper Confidence Bound algorithm

- Take each action once.
- At any time t > K,

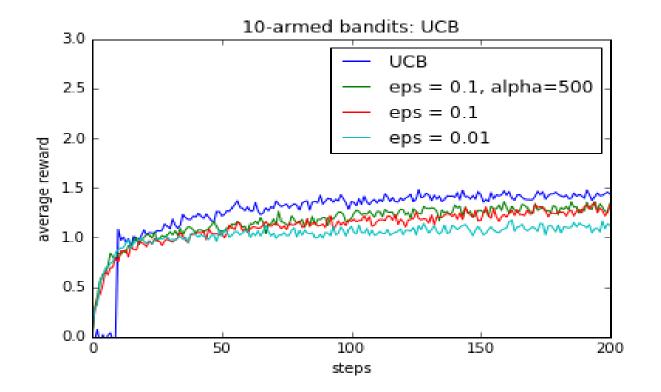
-
$$A_t = \underset{a}{\operatorname{argmax}} (Q_t(a) + \sqrt{\frac{2lnt}{N_a(t)}})$$
, where

- Q_t(a) is the average reward obtained from action a,
- $N_a(t)$ is the number of times action a has been taken.

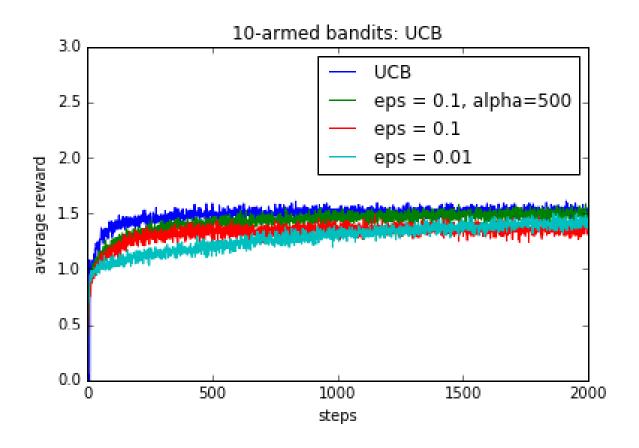
Upper Confidence Bounds

- $A_t = \operatorname{argmax}_a (Q_t(a) + \sqrt{\frac{2lnt}{N_a(t)}})$
- $\sqrt{\frac{2lnt}{N_a(t)}}$ is confidence interval for the average reward,
- Small $N_a(t)$ -> large confidence interval($Q_t(a)$ is more uncertain)
- large N_a(t)-> small confidence interval(Q_t(a) is more accurate)
- select action maximizing upper confidence bound.
 - Explore actions which are more uncertain, exploit actions with high average rewards obtained.
 - UCB: balance exploration and exploitation.
 - As t -> infinity, select optimal action.

How good is UCB? Experimental results



How good is UCB? Experimental results



Observations: After initial 10 steps, improves quickly and outperforms ε -Greedy methods.

How good is UCB? Theoretical guarantees

• Expected regret is bounded by

$$8^* \sum_{u_i < u^*} \frac{\ln t}{u^* - u_i} + \left(1 + \frac{\pi^2}{3}\right) \sum_{i=1}^K \left(u^* - u\right)$$

- Achieves the optimal regret up to a multiplicative constant.
- Expected regret grows in O(Int)

How is the UCB derived?

- Hoeffding's Inequality Theorem:
- Let be X_i, ..., X_t i.i.d. random variables in [0,1], and let X̄_t be the sample mean, then
 P[E[X̄_t]≥ X̄_t+u]≤ e^{-2tu²}
- Apply to the bandit rewards,
 - $P[Q(a) \ge Q_{t}(a) + V_{t}(a)] \le e^{-2N_{t}(a)V_{t}(a)^{2}},$
 - $2*V_t(a)$ is size of the confidence interval for Q(a)
 - $p=e^{-2N_t(a)Vt(a)^2}$ is the probability of making an error

How is the UCB derived?

• Apply to the bandit rewards, $- P[Q(a)>Q_t(a)+V_t(a)] \le e^{-2N_t(a)V_t(a)^2}$

• Let
$$p = e^{-2N_t(a)V_t(a)^2} = t^{-4}$$
,

• Then
$$V_t(a) = \sqrt{\frac{2lnt}{N_a(t)}}$$

- Variations of UCB1(the basic one here):
 - UCB1_tuned, UCB3, UCBv, etc.
 - Provide and prove different upper bounds for the expected regret.
 - Add a parameter to control the confidence level

- Stochastic bandits
 - Problem formulation
 - Algorithms:
 - Greedy, *ε*-greedy methods, UCB
 - Boltzmann exploration(Softmax)
- Adversarial bandits
 - Problem formulation
 - Algorithms
- Contextual bandits

- Boltzmann exploration(Softmax)
 - Pick a action with a probability that is proportional to its average reward.
 - Actions with greater average rewards are picked with higher probability.
- The algorithm:
 - Given initial empirical means $u_1(0),...,u_K(0)$

-
$$p_i(t+1) = \frac{e^{u_i(t)/\tau}}{\sum_{j=1}^{K} e^{u_j(t)/\tau}}$$
, i =1,...,K

- What is the use of τ ?
- What happens as $\tau \rightarrow infinity$?

- Boltzmann exploration(Softmax)
 - Pick a action with a probability that is proportional to its average reward.
 - Actions with greater average rewards are picked with higher probability.
- The algorithm:
 - Given initial empirical means $u_1(0),...,u_k(0)$

-
$$p_i(t+1) = \frac{e^{u_i(t)/\tau}}{\sum_{j=1}^{K} e^{u_j(t)/\tau}}$$
, i =1,...,K

- $-\tau$ controls the choice.
- as $\tau \rightarrow infinity$, selects uniformly.

- Stochastic bandits
 - Problem formulation
 - Algorithms:
 - ε-greedy methods, UCB
 - Boltzmann exploration(Softmax)
- Adversarial bandits
 - Problem formulation
 - Algorithms
- Contextual bandits

Non-stochastic/adversarial multi-armed bandit problem

- Setting:
 - K possible arms/actions: $1 \le i \le K$,
 - each action is denoted by an assignment of rewards. x(1), x(2),
 ..., of vectors x(t)=(x₁(t), x₂(t),...,x_K(t))
 - − x_i(t) ∈ [0,1] : reward received if action i is chosen at time step t (can generalize to in the range[a, b])
 - Goal : maximize the return(the accumulative reward.)
- Example. K=3, an adversary controls the reward.

k	t=1	t=2	t=3	t=4	
1	0.2	0.7	0.4	0.3	
2	0.5	0.1	0.6	0.2	
3	0.8	0.4	0.5	0.9	

Adversarial multi-armed bandit problem

- Weak regret = $G_{max}(T)-G_A(T)$
- $G_{max}(T)=max_j \sum_{t=1}^{T} x_j(t)$, return of the single global best action at time horizon T
- $G_A(T) = \sum_{t=1}^T x_{i_t}(t)$, return at time horizon T of algorithm A choosing actions $i_1, i_2,...$
- Example. G_{max}(4)=?, G_A(4)=?
 - (*indicates the reward received by algorithm A at a time step t)

K/T	t=1	t=2	t=3	t=4	
1	0.2	0.7	0.4	0.3*	
2	0.5*	0.1	0.6*	0.2	
3	0.8	0.4*	0.5	0.9	

Adversarial multi-armed bandit problem

• Example. G_{max}(4)=?, G_A(4)=?

$$- G_{\max}(4) = \max_{j} \sum_{t=1}^{T} x_{j}(t) = \max\{G_{1}(4), G_{2}(4), G_{3}(4)\}$$
$$= \max\{1.6, 1.4, 2.4\} = 2.4$$
$$- G_{A}(4) = \sum_{t=1}^{T} x_{i_{t}}(t) = 0.5 + 0.4 + 0.6 + 0.3 = 1.8$$

 Evaluate a randomized algorithm A: Bound on the expected regret for a A: G_{max}(T)-E[G_A(T)]

K/T	t=1	t=2	t=3	t=4	••••
1	0.2	0.7	0.4	0.3*	
2	0.5*	0.1	0.6*	0.2	
3	0.8	0.4*	0.5	0.9	

Exp3: exponential-weight algorithm for exploration and exploitation

- Parameter: $\gamma \in (0,1]$
- Initialize:
 - w_i(1) = 1 for i =1, ...,K
- for t=1, 2, ...

- Set
$$p_i(t) = (1 - \gamma) \frac{w_i(t)}{\sum_{j=1}^{K} w_j(t)} + \gamma \cdot \frac{1}{K}$$
, $i = 1, ..., K$

- Draw i_t randomly from $p_1(t)$, ..., $p_k(t)$
- Receive reward $x_{i_t} \in [0,1]$
- For j =1,...,K

•
$$\widehat{x_j(t)} = x_j(t) / p_j(t)$$
 if $j = i_t$

- $\widehat{x_j(t)} = 0$ otherwise
- $w_j(t+1) = w_j(t) * exp(\gamma * \widehat{x_j(t)}/K)$

Question: what happens at time step 1? At time step 2? What happens as $\gamma \rightarrow 1$? Why $x_i(t)/p_i(t)$?

Exp3: Balancing exploration and exploitation

- $p_i(t) = (1 \gamma) \frac{w_i(t)}{\sum_{j=1}^{K} w_j(t)} + \gamma \cdot \frac{1}{K}$, i = 1,...,K
- Balancing exploration and exploitation in Exp3
 - The distribution P(t) is a mixture of the uniform distribution and a distribution which assigns to each action a probability mass exponential in the estimated cumulative reward for that action.
 - Uniform distribution encourages exploration
 - The other probability encourages exploitation
 - The parameter γ controls the exploration.
 - $x_i(t)/p_i(t)$ compensate the reward of actions that are unlikely to be chosen

Exp3: How good is it?

• Theorem:

For any K>0 and for any $\gamma \in (0,1]$, $G_{max} - E[G_{Exp3}] \le (e-1) * \gamma * G_{max} + K* ln(K)/\gamma$ Holds for any assignment of rewards and for any T>0

- Corollary:
 - For any T > 0 , assume that $g \geq G_{\max}$ and that algorithm Exp3 is run with the parameter

•
$$\gamma = \min \{1, \sqrt{\frac{K \ln K}{(e-1)g}}\},$$

• Then $G_{max} - E[G_{Exp3}] \le 2\sqrt{(e-1)}\sqrt{gKlnk} \le 2.63\sqrt{gKlnk}$

A family of Exp3 algorithms

- Exp3, Exp3.1, Exp3.P, Exp4, ...
- Better performance
 - tighter upper bound,
 - achieve small weak regret with high probability, etc.
- Changes based on Exp3
 - How to choose $\boldsymbol{\gamma}$
 - How to initialize and update the weights w

Summary: Exploration & exploitation in Reinforcement learning

- Stochastic bandits
 - Problem formulation
 - Algorithms
 - *ε*-greedy methods, UCB, Boltzmann exploration(Softmax)
- Adversarial bandits

- Problem formulationAlgorithms: Exp3
- Contextual bandits
 - At each time step t, observes a feature/context vector.
 - Uses both context vector and rewards in the past to make a decision
 - Learns how context vector and rewards relate to each other.

References:

- "Reinforcement Learning: An Introduction" by Sutton and Barto
 - https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html
- "The non-stochastic multi-armed bandit problem" by Auer, Cesa-Bianchi, Freund, and Schapire
 - https://cseweb.ucsd.edu/~yfreund/papers/bandits.pdf
- "Multi-armed bandits" by Michael
 - http://blog.thedataincubator.com/2016/07/multi-armed-bandits-2/

Take home questions?

- 1. What is the difference between MABs(multiarmed bandits) and MDPs(Markov Decision Processes)?
- 2. How are they related?