Lecture 20: Reinforcement Learning – part III
(function approximation)
Sanjeev Arora Elad Hazan
Admin

• (programming) exercise MCMC – due today

• exercise on RL - announced hereby – due in 1 week

• Last lecture of the course: course summary + “ask us anything”, Prof. Arora + myself. Exercise: submit a question the lecture before (graded)

• Asking questions in class – **everything is allowed, including “can you explain again”** (especially for RL material)

• Next class: Prof. Seung on deep learning

• Class after the next: Dr. Li (please submit questions)
Markov Decision Process

Markov Reward Process, definition:
• Tuple (S, P, R, A, γ) where
 • $S =$ states, including start state
 • $A =$ set of possible actions
 • $P =$ transition matrix $p_{ss'}^a = \Pr[S_{t+1} = s'|S_t = s, A_t = a]$
 • $R =$ reward function, $R_s^a = E[R_{t+1}|S_t = s, A_t = a]$
 • $\gamma \in [0, 1] =$ discount factor

• Return

 $$G_t = \sum_{i=1}^{\infty} R_{t+i} \gamma^{i-1}$$

• Goal: take actions to maximize expected return
Policies

The Markovian structure \Rightarrow best action depends only on current state!

- Policy = mapping from state to distribution over actions
 $\pi: S \mapsto \Delta(A), \; \pi(a|s) = \Pr[A_t = a|S_t = s]$

- Given a policy, the MDP reduces to a Markov Reward Process
Reminders

START

<table>
<thead>
<tr>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
</tr>
</tbody>
</table>

Ep 10 - Reward 77
Bellman optimality equations

• Bellman equation: $v_*(s) = \max_a \{q_*(s, a)\}$ implies **Bellman optimality equations**:

$$q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a \max_{a'} \{q_*(s', a')\}$$

$$v_*(s) = \max_a \left\{ R_s^a + \gamma \sum_{s'} P_{ss'}^a v_*(s') \right\}$$

• Iterative methods based on the Bellman equations: dynamic programming
 • Policy iteration
 • Value iteration
Policy iteration

1. **Start:** arbitrary policy
2. **Evaluate policy**
3. **Improve policy**
4. **Compute final policy**
Value iteration

Start: state values corresponding to arbitrary policy

Improve values

Compute final policy
Model-free RL

Thus far: assumed we know transition matrices, rewards, states, and they are not too large.

What if transitions/rewards are:
1. unknown
2. too many to keep in memory / compute over

“model free” = we do not have the “model” = transition matrix P and reward vector R

• can estimate P and R from history, and use any of the methods we saw (solving for estimate may not be optimal!)
Monte Carlo policy iteration/evaluation

Instead of computing, estimate $v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$ by random walk:

- The first time state s is visited, update counter $N(s)$ (increment every time it’s visited again)
- Keep track of all rewards from this point onwards
- Estimate of G_t is sum of rewards / $N(s)$.
- Claim: this estimator has expectation $G_t(s)$, and converges to it by law of large numbers
- Similarly can estimate value-action function $q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$

- What do we do with estimated values?
 - policy iteration requires rewards+transitions
 - Model-free policy improvement:
 $$\pi(s) = \arg \max_a \{q_{\pi}(s, a)\}$$
Temporal Difference learning

Similar idea, but instead of long-horizon estimation, iteratively update by

$$v^\pi(s) = v^\pi(s) + \alpha(G_e - v^\pi(s))$$

$$= v^\pi(s) + \alpha(R_{t+1} + \gamma v^\pi(s') - v^\pi(s))$$

- More flexible than MC learning (don’t need to wait for estimates to converge)
- Similar idea applies to state-action function $q(s,a)$
- Never estimate the “model” (transition matrix and reward vector)
LARGE state space

of states may still be prohibitively large!

- Backgammon: 10^{20} states
- Chess: 10^{40} states
- Go: 10^{70} states

Previous methods still infeasible!

Function Approximation: **approximate** the state space (and all model parameters) with a more compact one!

- Reduction in # of states (computation and space)
- More importantly: generalization to unseen states!

Types of (value / action-value) function approximation:

- Linear
- Neural network
- Decision tree
- ...
Function approximation

Finding optimal $\theta \rightarrow$ knowledge of value for ALL states!

$$v_\theta(s) = \theta_1 x_1(s) + \theta_2 x(s) + \ldots + \theta_n x_n(s) = \theta^T x(s)$$

10^{40} states are mapped to linear function over n “important” features, i.e.

1. Number of white pieces – black pieces
2. Distance between kings
3. Etc.

Learning a value function over n parameters: supervised learning!
Recall 1st part of course: sample complexity, computational complexity,…
Function approximation – computing value function

Natural objective: MSE between approximation and true value per state, i.e.
\[f(\theta) = E_\pi (v_\pi(s) - v_\theta(s))^2 \]

Minimizing \(f(\theta) \)?
Stochastic gradient descent!!
\[\theta_{t+1} = \theta_t - \nabla f(\theta_t) \]

Consider linear approximation: \(v_\theta(s) = \theta^T x(s) \), then algorithm becomes:
\[\theta_{t+1} = \theta_t - \eta E_\pi (v_\pi(s) - v_\theta(s)) \times x(s) \]

TD algorithm:
\[\theta_{t+1} = \theta_t - \eta (R_{t+1} + \gamma \theta^T x(s') - \theta^T x(s)) \times x(s) \]
How to improve the policy?

Apply same idea for state-action function, i.e. linear approximation: \(q_\theta(s, a) = \theta^T x(s, a) \) for a state-action vector \(x(s, a) \). Optimize MSE of state-action error:

\[
f(\theta) = E_\pi (q_\pi(s, a) - q_\theta(s, a))^2
\]

TD algorithm:

\[
\theta_{t+1} = \theta_t - \eta \left(R_{t+1} + \gamma \max_{a'} \theta^T x(s', a') - \theta^T x(s, a) \right) \times x(s, a)
\]

Off-policy vs. on-policy: for on need to add exploration (e.g. instead of greedy \(a' \) choice, choose with small probability an action at random).
Policy gradient + function approximation

Start: (approximate) state values corresponding to arbitrary policy

Improve policy

Return final policy
Policy gradient algorithm for approximate MDP

Parametrized policy, \(\pi_\theta(s) \), for example, could be the max action according to q functions:

\[
\pi_\theta(s) = \max_a q_\theta(s, a)
\]

(many times – soft approximation to max to ensure smoothness)

Q-functions can be linear / deep nets, etc.

Plan: gradient descent on the parameter \(\theta \) to optimize policy directly.

NOT the same as Q-learning w. value approximation! (not trying to optimize q function).

How do we compute gradient?

We can compute: \(f(\theta) = E_{\pi_\theta} [v^{\pi_\theta}(s_1)] \)

(by evaluating return, running policy)
gradient descent without a gradient

The derivative of a function $f(x): R \mapsto R$

$$f'(x) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x-\delta)}{2\delta}$$

$$\approx E_{y \in_R \{1, -1\}} \left[\frac{f(x + \delta y) - y}{2\delta} \right]$$

Idea: can sample unbiased coin, and return gradient estimator by single evaluation of the function!

Can you see how to continue?
gradient descent without a gradient

Stokes’ theorem for $f(x): R^d \rightarrow R$, let $\delta \ll 1$ be very small,

$$\nabla f(x) \approx \nabla E_{|v| \leq 1}[f(x + \delta v)] = \frac{d}{\delta} E_{|y| = 1}[f(x + \delta v) \cdot v]$$

Idea: can sample function at a single point $x + \delta v$, and estimate the gradient for stochastic gradient descent!

(or, almost equivalently, do the previous slide for each coordinate)
Policy gradient without a gradient

Parametrized policy, $\pi_\theta(s)$, for example, could be the max action according to q functions:

$$\pi_\theta(s) = \max_a q_\theta(s, a)$$

(many times – soft approximation to max to ensure smoothness)

Update using gradient descent:

$$\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$$

Where the gradient estimator is obtained by:

$$\frac{d}{d\delta} E_{|y|=1}[f(\theta_t + \delta v) \cdot v]$$

for $f(\theta) = E_{\pi_\theta} [v^{\pi_\theta}(s_1)]$

(by evaluating return, running policy)
Summary

• Model free algorithms for solving MDPs
 • Q-function (state-action) and value function estimation via MCMC
 • Same via temporal difference
 • Q-function optimization via temporal difference (or MCMC)

• Function approximation idea – generalization and efficiency
 • Gradient descent approximation to estimate value/Q functions
 • Gradient descent to optimize the optimal Q-function directly

• Policy gradient method
 • Gradient descent without a gradient idea