proléibllltles ,g)n
1)]mnm . - o] .
. grepreseﬁtatmnd S g‘a;’ COS 402 — Machine
=~ n .
Ssui’.oeg‘g’}femﬁ ?g_‘é Learning and
' g ¢ Hﬁ‘é o Artificial Intelligence
L)
5 EIILLOLAECHE Fall 2016
o, wSemanties 5eare
<
O,_a 8 COS 402: Artificial Intelligence
i and Machine Learning

Lecture 19: Reinforcement Learning — part Il
(RL algorithms)

Sanjeev Arora Elad Hazan

PRINCETON
UNIVERSITY

Admin

* (programming) exercise MCMC — due next class
 We will have at least 1 more exercise on RL

* Last lecture of the course: “ask us anything”, Prof. Arora + myself.
Exercise: submit a question the lecture before (graded)

Markov Decision Process

Markov Reward Process, definition:
* Tuple(S,P,R,A,y) where

e S =states, includingstart state

A = set of possible actions

P =transition matrix P%, = Pr[S;y1 = S'|S¢ = 5,4 = a]
R =reward function, R = E[R;11|S¢ = s, A = a

vy € [0,1] = discount factor

* Return

Gy = z Reyiy' !

[=1to o

e Goal: take actions to maximize expected return

Policies
The Markovian structure =» best action depends only on current state!

* Policy = mapping from state to distribution over actions
m:S - A(A), n(als) = Pr[A, = a|S; = 5]

* Given a policy, the MDP reduces to a Markov Reward Process

Reminder: MDP1

actions: UP, DOWN, LEFT, RIGHT

upP

-1 80% move UP
10% move LEFT
10% move RIGHT

START
reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step
e states
* actions
* rewards

* Policies?

Reminder 2

 State? Actions? Rewards? Policy?

Policies: action = study

Facebook
R=-1

Policies: action = facebook

Facebook
R=-1

Fixed policy = Markov Reward process

* Given a policy, the MDP reduces to a Markov Reward Process

* PSZ! — ZaEA n(a|s) Pscsl:l

* RT = ¥ 4cam(als) RS

* Value function for policy: v,(s) = E;[G;|S; = s]

* Action-Value function for policy: q.(s,a) = E.[G.|S; =s,A; = a]

* How to compute the best policy?

The Bellman equation

* Policies satisfy the Bellman equation:

v (s) = En[Rt+1 + ¥V Ur(Se+1)| St = s] = RS + VZ ng'vn(sl)
S

e And similarly for value-action function:

v, (s) = z (als)q, (s, a)

acA
e Optimal value function, and value-action function
*v.(s) = max{v:(s)} q.(s,a) = max{gr(s, a)}

* Important: v,(s) = maxq.(s,a), why?
a

Bellman optimality equations

* There exists an optimal policy m, (it is deterministic!)

* All optimal policy achieve the same optimal value v,(s) at every state,and the same optimal value-action
function q.(s, a) at every state and for every action.

* How canwe find it? Bellman equation: v,(s) = max {q.(s,a)} implies Bellman optimality equations:
(why?) *

q.(s,a) =R +vy E P%, max {q,(s',a")}
al
S/

v,(s) = max zRg +y E Py v*(s’)}
a
S/

Non-linear! Solution = optimal policy. why? (later)

Algorithms — finding an optimal policy

qg.(s,a) =R%+y E P&, max {q.(s’,a")}
al’l
S/

v,(s) = max {R? +y E Psi/v*(s’)}
a
Y/

* |terative methods based on the Bellman equations: dynamic programming
* Policy iteration
* Value iteration

Policy iteration

Start: arbitrary
policy

Evaluate policy

Improve policy Compute final

policy

Policy iteration

e Start with arbitrary policy my:S = A

* While (not converged to optimality) do:

e Evaluate current policy
vV, = R™ + y PTky,,

* Improve policy by greedy step (from some or all states)

My1(S) = argmax{R“ +y z Uk (S)}

acA

Policy iteration

e Start with arbitrary policy mg: S — A

* While (not converged to optimality) do:

e Evaluate current policy
v, = R™ 4+ 7y PTky,,

* Improve policy by greedy step (from some or all states)

aeA

Ty 4+1(s) = argmax {RS +y z P vk (S')}
S/

= argmax{q™(s,a)}
acA

(compute g™ (s, a) fromv™(s))

» Measure of distance to optimality, e.g., |Vx+1 — Vil oo

Policy iteration

* Intuitive

* Provably converging (prove?)

 Computationally somewhat expensive

* Better method with easier convergence analysis next...

Value iteration

Start: state values
corresponding to
arbitrary policy

Improve values

Compute final

policy

Value iteration

— a /
Vie+1(s) = max {R? +y Z P vk (s)}
Y/

In matrix form:
vk+1 = mgx{R + Y Pavk}
a

* Initialize, vy(s) = 1

* While |vj41 — Vi |0 > € do:
* Update for all states v,,4(s) from v,(s)

* Compute (near) optimal policy 7(s) = argmax{R¢ +y Y P, Vi (s}
aeA

Value iteration

* Faster computationally (no policy till the end)
e Easier convergence analysis:

Theorem: v* is unique, and value Iteration converges geometrically:

1Vir1 — Voo S VHIVL — Voo

Value iteration - proof

Define the operatorT as
T(v) = m_ax{R +vy P“v}
a

| max, f(x) —max, g(y)|
<= max, |(f-g)(z)]|

Then,
T(w*) =v*

And,
V1 = Voo = IT(Wx) =T

= ‘mgx{R +y Pavk} — m_ax{R +y Pav*}
a a

co

< m§x|{R +vy Pavk} — {R +y Pav*}
a

0o P is a tranition matrix

= y|PE(vy — v¥)

0 < ylvk - v*loo

Value iteration - proof

Thus,
Vk+1 — Voo < Vlvk — Voo

And recursively
Vi1 — Voo £ ¥¥|01 = v7o

Uniqueness of v*?

Value and policy iteration

Exercise: give runningtime bounds in terms of # of states, actions

Exact computation of optimal policy/values?
v, (s) = max{Ra +y ZPa,v*(s)}

Equivalent to:
Va€eA . v, >R+ y P%,

Linear program!

Reminder: linear programming

formulation:
AER™ M xe R beR™ m>n
Ax > Db

Special case of convex programming/optimization. Admits polynomial time algorithms (roughly
O(/m n®)), and practical algorithms such as the simplex.

Admits approximationalgorithmsthatrunin linear time, or even sublineartime O (mezn).
MDP LP:

VaeA . v,=>R*+y P%,

So for us, n=|S|, m=|A|*|S]|
fy=17?

Model-free RL

Thus far: assumed we know transition matrices, rewards, states, and they are not too large.
What if transitions/rewards are:

1. unknown

2. toomanyto keep in memory/ compute over

“model free” = we do not have the "model” = transition matrix P and reward vector R

Model-free RL

Monte-carlo policy evaluation:instead of computing, estimate v, (s) = E;[G¢|S; = s] byrandom
walk:

* The firsttime state s is visited, update counter N(s) (increment every time it’s visited again)

» Keep track of all rewards from this point onwards

» Estimate of G, is sum of rewards/ N(s).

* Claim: this estimator has expectation v (s), and converges to it by law of large numbers

* Similarly can estimate value-action function q,(s,a) = E[G.|S; = s, A; = a]

e Whatdo we do with estimated values?

* policy iteration requires rewards+transitions

* Model-free policy improvement:
n(s) = argmax{q,(s,a)}
a

Summary

* Algorithms for solving MDPs based on dynamic programming (Bellman
equation)
* Value iteration, policy iteration

* Proved convergence, convergence rate
* Linear programming view
* Partial observation — estimation of the state-action function (model free)

* Next: function approximation

