
Lecture	19:	Reinforcement	Learning	– part	II
(RL	algorithms)

Sanjeev	Arora	 Elad	Hazan

COS	402	– Machine	
Learning	and	

Artificial	Intelligence
Fall	2016

Admin

• (programming)	exercise	MCMC	– due	next	class
• We	will	have	at	least	1	more	exercise	on	RL
• Last	lecture	of	the	course:	“ask	us	anything”,	Prof.	Arora	+	myself.	
Exercise:	submit	a	question	the	lecture	before (graded)

Markov	Decision	Process

Markov	Reward	Process,	definition:	
• Tuple	(𝑆,𝑃, 𝑅, 𝐴, 𝛾) where

• S	=	states,	including	start	state
• A	=	set	of	possible	actions
• P	=	transition	matrix				𝑃))*+ = Pr[𝑆012 = 𝑠′|𝑆0 = 𝑠,𝐴0 = 𝑎]
• R	=	reward	function,	𝑅)+ = 𝐸[𝑅012|𝑆0 = 𝑠, 𝐴0 = 𝑎]
• 𝛾 ∈ [0,1]	=	discount	factor

• Return
𝐺0 = > 𝑅01?𝛾?@2

?A2	0B	C	
• Goal:	take	actions	to	maximize	expected	return

Policies

The	Markovian	structure	è best	action	depends	only	on	current	state!	

• Policy	=	mapping	from	state	to	distribution	over	actions
𝜋: 𝑆 ↦ Δ(𝐴), 𝜋 𝑎 𝑠 = Pr[𝐴0 = 𝑎|𝑆0 = 𝑠]	

• Given	a	policy,	the	MDP	reduces	to	a	Markov	Reward	Process

Reminder:	MDP1

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

• states
• actions
• rewards

• Policies?

Reminder	2

• State?	Actions?	Rewards?	Policy?

Policies:		action	=	study

Class
R=2	

Party
R=1

Sleep
R=0Facebook

R=-1

0.1

0.1

0.9

0.1

0.1

0.1

0.9

0.8

0.8

Policies:		action	=	facebook

Class
R=2	

Party
R=1

Sleep
R=0Facebook

R=-1

0.9

0.9

0.1

0.1

0.1

0.05

0.9

0.8

0.05

Fixed	policy	àMarkov	Reward	process

• Given	a	policy,	the	MDP	reduces	to	a	Markov	Reward	Process

• 𝑃))*H = ∑ 𝜋 𝑎 𝑠+∈J 𝑃))*+

• 𝑅)H = ∑ 𝜋 𝑎 𝑠+∈J 𝑅)+

• Value	function	for	policy:			𝑣H 𝑠 = 𝐸H[𝐺0|𝑆0 = 𝑠]
• Action-Value	function	for	policy:			𝑞H 𝑠, 𝑎 = 𝐸H[𝐺0|𝑆0 = 𝑠, 𝐴0 = 𝑎]

• How	to	compute	the	best	policy?	

The	Bellman	equation

• Policies	satisfy	the	Bellman	equation:

𝑣H 𝑠 = 𝐸H 𝑅012 + 𝛾	𝑣H(𝑆012)|	𝑆0 = 𝑠 = 𝑅)H + 𝛾>𝑃))N
H 𝑣H(𝑠*)

)
• And	similarly	for	value-action	function:

𝑣H 𝑠 => 𝜋 𝑎 𝑠 𝑞H(𝑠, 𝑎)
+∈J

• Optimal	value	function,	and	value-action	function
• 𝑣∗ 𝑠 = max

H
	 𝑣H 𝑠 									𝑞∗ 𝑠, 𝑎 = max

H
	 𝑞H(𝑠, 𝑎)

• Important:				𝑣∗ 𝑠 = max
+
𝑞∗(𝑠, 𝑎),		why?	

Bellman	optimality	equations

• There	exists	an	optimal	policy	𝜋∗ (it	is	deterministic!)
• All	optimal	policy	achieve	the	same	optimal	value	𝑣∗(𝑠) at	every	state,	and	the	same	optimal	value-action	
function	𝑞∗ 𝑠, 𝑎 at	every	state	and	for	every	action.	

• How	can	we	find	 it?			Bellman	equation:	𝑣∗ 𝑠 = max
+
	 𝑞∗(𝑠, 𝑎) implies	Bellman	optimality	equations:	

(why?)

𝑞∗ 𝑠, 𝑎 = 𝑅)+ + 𝛾	>𝑃))*+
)*

max
+*
	 𝑞∗(𝑠′, 𝑎′)

𝑣∗ 𝑠 = max
+

𝑅)+ + 𝛾	>𝑃))N
+ 𝑣∗(𝑠*)

)*

Non-linear!	Solution	à optimal	policy.	why?	(later)

Algorithms	– finding	an	optimal	policy

𝑞∗ 𝑠, 𝑎 = 𝑅)+ + 𝛾	>𝑃))*+
)*

max
+*
	 𝑞∗(𝑠′, 𝑎′)

𝑣∗ 𝑠 = max
+

𝑅)+ + 𝛾	>𝑃))N
+ 𝑣∗(𝑠*)

)*

• Iterative	methods	based	on	the	Bellman	equations:	dynamic	programming
• Policy	iteration
• Value	iteration

Policy	iteration

Evaluate	policy

Improve	policy

Start:	arbitrary	
policy

Compute	final	
policy

Policy	iteration

• Start	with	arbitrary	policy		𝜋S: 𝑆 ↦ 𝐴
• While	(not	converged	to	optimality)	do:
• Evaluate	current	policy	

𝑣T = 𝑅HU + 𝛾	𝑃HU𝑣T
	

• Improve	policy	by	greedy	step	(from	some	or	all	states)	

𝜋T12 𝑠 = argmax
+∈J

𝑅)+ + 𝛾	>𝑃))N
+ 𝑣T(𝑠*)

)*

Policy	iteration

• Start	with	arbitrary	policy		𝜋S: 𝑆 ↦ 𝐴
• While	(not	converged	to	optimality)	do:

• Evaluate	current	policy	
𝑣T = 𝑅HU + 𝛾	𝑃HU𝑣T
	

• Improve	policy	by	greedy	step	(from	some	or	all	states)	

𝜋T12 𝑠 = argmax
+∈J

𝑅)+ + 𝛾	>𝑃))N
+ 𝑣T(𝑠*)

)*

= argmax
+∈J

𝑞H(𝑠, 𝑎)

(compute	𝑞H(𝑠, 𝑎) from	𝑣H(𝑠))

• Measure	of	distance	to	optimality,	e.g.,	 𝑣T12 − 𝑣T C

Policy	iteration

• Intuitive
• Provably	converging	(prove?)
• Computationally	somewhat	expensive
• Better	method	with	easier	convergence	analysis	next…

Value	iteration

Improve	values

Start:	state	values	
corresponding	 to	
arbitrary	policy

Compute	final	
policy

Value	iteration

𝑣T12 𝑠 = max
+∈J

𝑅)+ + 𝛾	>𝑃))N
+ 𝑣T(𝑠*)

)*
In	matrix	form:

𝑣T12 = max
+

𝑅 + 𝛾	𝑃+𝑣T

• Initialize,	v0(s)	=	1
• While	 𝑣T12 − 𝑣T C > 𝜖 do:

• Update	for	all	states	vk+1(s)	 from	vk(s)

• Compute	(near)	optimal	policy		𝜋 𝑠 = argmax
+∈J

𝑅)+ + 𝛾	∑ 𝑃))N
+ 𝑣T(𝑠*))*

Value	iteration

• Faster	computationally	(no	policy	till	the	end)
• Easier	convergence	analysis:

Theorem:	v∗ is	unique,	and	value	Iteration	converges	geometrically:	

𝑣T12 − 𝑣∗ C ≤ 𝛾T 𝑣2 − 𝑣∗ C

Value	iteration	- proof

Define	the	operator	T	as	
𝑇 𝑣 = max

+
𝑅 + 𝛾	𝑃+𝑣

Then,
𝑇 𝑣∗ = 𝑣∗

And,
𝑣T12 − 𝑣∗ C = 𝑇 𝑣T − 𝑇 𝑣∗ C

= max
+

𝑅 + 𝛾	𝑃+𝑣T −max
+

𝑅 + 𝛾	𝑃+𝑣∗
C
	

≤ max
+

𝑅 + 𝛾	𝑃+𝑣T − 𝑅 + 𝛾	𝑃+𝑣∗ C	

= 𝛾 𝑃+ 𝑣T − 𝑣∗ C 	≤ 		𝛾 𝑣T − 𝑣∗ C

|maxx f(x)	– maxy g(y)|	
<=	maxz |(f-g)(z)|

P	is	a	tranition matrix

Value	iteration	- proof

Thus,
𝑣T12 − 𝑣∗ C ≤ 	𝛾 𝑣T − 𝑣∗ C

And	recursively
𝑣T12 − 𝑣∗ C ≤ 	𝛾T 𝑣2− 𝑣∗ C

Uniqueness	 of	v*	?

Value	and	policy	iteration

Exercise:	give	running	time	bounds	in	terms	of	#	of	states,	actions

Exact	computation	of	optimal	policy/values?	

𝑣∗ 𝑠 = max
+

𝑅)+ + 𝛾	>𝑃))N
+ 𝑣∗(𝑠*)

)*

Equivalent	to:	
∀𝑎 ∈ 𝐴		. 		𝑣∗ ≥ 𝑅+ + 𝛾	𝑃+𝑣∗

Linear	program!	

Reminder:	linear	programming

formulation:	
𝐴 ∈ 𝑅l×n		, 𝑥 ∈ 𝑅n, 𝑏 ∈ 𝑅l	,𝑚 ≥ 𝑛		

			𝐴𝑥 ≥ 𝑏

Special	case	of	convex	programming/optimization.	Admits	polynomial	time	algorithms	(roughly	
O 𝑚	𝑛t),	and	practical	algorithms	such	as	the	simplex.				

Admits	approximation	algorithms	that	run	in	linear	time,	or	even	sublinear	time	O l1n
uv .

MDP	LP:
∀𝑎 ∈ 𝐴		. 		𝑣∗ ≥ 𝑅+ + 𝛾	𝑃+𝑣∗

So	for	us,	n=|S|,	m=|A|*|S|
If	𝛾 = 1 ?

Model-free	RL	

Thus	far:	assumed	we	know	transition	matrices,	rewards,	states,	and	they	are	not	too	large.	
What	if	transitions/rewards	are:
1. unknown	
2. too	many	to	keep	in	memory	/	compute	over

“model	free”	=	we	do	not	have	the	”model”	=	transition	matrix	P	and	reward	vector	R

Model-free	RL	

Monte-carlo policy	evaluation:	instead	of	computing,	estimate		𝑣H 𝑠 = 𝐸H[𝐺0|𝑆0 = 𝑠]	 by	random	
walk:

• The	first	time	state	s	is	visited,	update	counter	N(s)	(increment	every	time	it’s	visited	again)
• Keep	track	of	all	rewards	from	this	point	onwards
• Estimate	of	Gt is	sum	of	rewards	/	N(s).	
• Claim:	this	estimator	has	expectation	𝑣H 𝑠 ,	and	converges	to	it	by	law	of	large	numbers
• Similarly	can	estimate	value-action	function	𝑞H 𝑠, 𝑎 = 𝐸H[𝐺0|𝑆0 = 𝑠, 𝐴0 = 𝑎]

• What	do	we	do	with	estimated	values?	
• policy	iteration	requires	rewards+transitions
• Model-free	policy	improvement:	

𝜋 𝑠 = argmax
+

𝑞H 𝑠,𝑎

Summary

• Algorithms	for	solving	MDPs	based	on	dynamic	programming	(Bellman	
equation)
• Value	iteration,	policy	iteration

• Proved	convergence,	convergence	rate

• Linear	programming	view

• Partial	observation	– estimation	of	the	state-action	function	(model	free)

• Next:	function	approximation

