

COS 402 – Machine Learning and Artificial Intelligence Fall 2016

Lecture 18: Reinforcement Learning

Sanjeev Arora

Elad Hazan

Some slides borrowed from Peter Bodik and David Silver

Course progress

- Learning from examples
 - Definition + fundamental theorem of statistical learning, motivated efficient algorithms/optimization
 - Convexity, greedy optimization gradient descent
 - Neural networks
- Knowledge Representation
 - NLP
 - Logic
 - Bayes nets
 - Optimization: MCMC
 - HMM
- Today: reinforcement learning part 1

Admin

- (programming) exercise MCMC announced today
- Due in 1 week in class, as usual

Decisions and planning

• Thus far:

- Learning from examples
- Knowledge representation / language
- inference/prediction
- Missing: actions/decisions
 - Learn from interaction
- RL:
 - no supervisor, only a reward signal
 - Feedback is delayed
 - Time really matters (sequential, non i.i.d data)
 - Agent's actions affect the subsequent data it receives

RL - examples

- Fly stunt maneuvers in a helicopter
- Defeat the world champion at Backgammon (& Go)
- Control a power station
- Make a humanoid robot walk
- Play Atari games better than humans

Reward hypothesis

- Agent goal: maximize *cumulative* reward
- Hypothesis: **All** goals can be described by the maximization of expected cumulative reward (?)
- Examples:
 - Fly stunt maneuvers in a helicopter: +ve reward for following desired trajectory –ve reward for crashing
 - Backgammon:
 - +/-ve reward for winning/losing a game
 - Make a humanoid robot walk: +ve reward for forward motion –ve reward for falling over
 - Play many different Atari games:

+/-ve reward for increasing/decreasing score

Sequential decision making

- Agent takes action
- Nature responds with reward
- Agent sees observation
- Agent has internal state (from all previous observations) $s_t = f(H_t), \qquad H_t = \{o_1, r_1, a_1, \dots, o_{t-1}, r_{t-1}, a_{t-1}, o_t, r_t\}$
- Markovian assumption: state, observation, reward are independent on past given current state Pr[s_t|s_{t-1}] = Pr[s_t|s₁, ..., s_{t-1}]

Markovian?

• State? Actions? Rewards?

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP10% move LEFT10% move RIGHT

reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

- states
- actions
- rewards
- what is the solution?

Is this a solution?

- only if actions deterministic
 - not in this case (actions are stochastic)
- solution/policy
 - mapping from each state to an action

Reward for each step -2

Reward for each step: -0.1

Reward for each step: -0.04

Reward for each step: -0.01

Reward for each step: +0.01

Formal model: Markov Decision Process

- States: Markov Process (chain)
- Rewards: Markov Reward Process
- Decisions: Markov Decision Process

Markov Process: the student chain

	FB	С	Р	S
FB	0.9	0.1		
С	0.5		0.4	0.1
Ρ		0.5		0.5
S				1

Example: the student chain

- Example of episodes (random walks):
 - C C Fb Fb C P S
 - C Fb Fb Fb Fb C P S

Markov Reward Process: the student REWARD chain

	FB	С	Р	S
FB	0.9	0.1		
С	0.5		0.4	0.1
Р		0.5		0.5
S				1

Example: the student REWARD chain

Markov Reward Process, definition:

- Tuple (S, P, R, γ) where
 - S = states, including start state
 - P = transition matrix $P_{ss'} = \Pr[S_{t+1} = s' | S_t = s]$
 - R = reward function, $R_s = E[R_{t+1}|S_t = s]$
 - $\gamma \in [0,1]$ = discount factor
- Return

Exponentially diminishing returns why?

- $\gamma = 0$? $\gamma = 1$?
- With discount factor < 1 \rightarrow G_t always well defined, regardless of stationarity

Example: the student REWARD chain

- Example of episode (random walks): discount factor = 1/2
 - C C Fb Fb S

total reward =

$$G_1 = 2 + 2 * \frac{1}{2} + (-1) * \left(\frac{1}{2}\right)^2 + (-1) * 0.5^3 + 0 = 2 + 1 - \frac{1}{4} - \frac{1}{8}$$

 $= 3 - 0.365 = 2.635$

• C Fb Fb Fb Fb C P S

G₁=?

The Value function

• Mapping from states to real numbers:

 $v(s) = E[G_t | S_t = s_t]$


```
Value function, \gamma = 0
```


	FB	С	Р	S
FB	0.9	0.1		
С	0.5		0.4	0.1
Ρ		0.5		0.5
S				1

Computing the value function

• How can we compute it?

$$v(s) = E[G_t | S_t = s_t]$$

The **Bellman equation** for MRP

The Bellman equation for MRP

$$v(s) = E[G_t|S_t = s]$$

$$= E\left[\sum_{i=1}^{\infty} \gamma^{i-1}R_{t+i} | S_t = s\right]$$

$$= E\left[R_{t+1} + \gamma \sum_{i=1}^{\infty} \gamma^{i-1}R_{t+1+i} | S_t = s\right]$$

$$= E[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

$$= E[R_{t+1} + \gamma v(S_{t+1})|S_t = s]$$

$$= E[R_{t+1} + \gamma v(S_{t+1})|S_t = s]$$

$$= R_s + \gamma \sum_s P_{ss'} v(s')$$

Bellman equation in matrix form

• How can we compute it?

$$v(s) = R_s + \gamma \sum_s P_{ss'} v(s')$$
$$v = R + \gamma P v$$

For v being the vector of values v(s), R being vector in same space of R(s), $\forall s \in S$, and P being the transition matrix. Thus,

$$v = (I - \gamma P)^{-1}R$$

System of linear equations (Gaussian elimination, cubic time)

Markov Decision Process

Markov Reward Process, definition:

- Tuple (S, P, R, A, γ) where
 - S = states, including start state
 - A = set of possible actions
 - P = transition matrix $P_{ss'}^a = \Pr[S_{t+1} = s' | S_t = s, A_t = a]$
 - R = reward function, $R_s^a = E[R_{t+1}|S_t = s, A_t = a]$
 - $\gamma \in [0,1]$ = discount factor

• Return

$$G_t = \sum_{i=1 \text{ to } \infty} R_{t+i} \gamma^{i-1}$$

• Goal: take actions to maximize expected return

The Markovian structure → best action depends only on current state!

- Policy = mapping from state to distribution over actions $\pi: S \mapsto \Delta(A), \ \pi(a|s) = \Pr[A_t = a|S_t = s]$
- Given a policy, the MDP reduces to a Markov Reward Process

Reminder: MDP1

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP10% move LEFT10% move RIGHT

reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

- states
- actions
- rewards
- Policies?

Reminder 2

• State? Actions? Rewards? Policy?


```
Policies: action = study
```


Policies: action = facebook

Fixed policy \rightarrow Markov Reward process

- Given a policy, the MDP reduces to a Markov Reward Process
- $P_{ss'}^{\pi} = \sum_{a \in A} \pi(a|s) P_{ss'}^a$
- $R_s^{\pi} = \sum_{a \in A} \pi(a|s) R_s^a$
- Value function for policy: $v_{\pi}(s) = E_{\pi}[G_t|S_t = s]$
- Action-Value function for policy: $q_{\pi}(s, a) = E_{\pi}[G_t|S_t = s, A_t = a]$

• How to compute the best policy?

The Bellman equation

• Policies satisfy the Bellman equation:

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s] = R_s^{\pi} + \gamma \sum_s P_{ss'}^{\pi} v_{\pi}(s')$$

• And similarly for value-action function:

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s,a)$$

• Optimal value function, and value-action function

•
$$v_*(s) = \max_{\pi} \{v_{\pi}(s)\}$$
 $q_*(s,a) = \max_{\pi} \{q_{\pi}(s,a)\}$

• Important: $v_*(s) = \max_a q_*(s, a)$, why?

Theorem

- There exists an optimal policy π_* (it is deterministic!)
- All optimal policy achieve the same optimal value $v_*(s)$ at every state, and the same optimal value-action function $q_*(s, a)$ at every state and for every action.
- How can we find it? Bellman equation: $v_*(s) = \max_a \{q_*(s, a)\}$ implies Bellman optimality equations:

$$q_*(s,a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a \max_{a'} \{q_*(s',a')\}$$

$$v_*(s) = \max_a \left\{ R_s^a + \gamma \sum_{s'} P_{ss'}^a v_*(s') \right\}$$

Summary

- Markov Reward Process generalization of Markov Chains
- Markov Decision Processes formalization of learning with state from environment observations in a Markovian world.
- Bellman equation: fundamental recursive property of MDPs
- Will enable algorithms (next class...)