proléibllltles ,g)n
1)]mnm . - o] .
. grepreseﬁ’tatm S g‘a;’ COS 402 — Machine
=~ n .
gsupvoeg‘g’rlf?iﬁ ?:.Dé’fé Learning and
g g H AS 0 Artificial Intelligence
.5 gintelligene Fall 2016
o, wSemanties 5eare
<
O,_a 8 COS 402: Artificial Intelligence

and Machine Learning

1

Lecture 18: Reinforcement Learning
Sanjeev Arora Elad Hazan

PRINCETON
UNIVERSITY

Some slides borrowed from Peter Bodik and David Silver

Course progress

* Learning from examples

* Definition + fundamental theorem of statistical learning, motivated efficient
algorithms/optimization

e Convexity, greedy optimization—gradientdescent
* Neuralnetworks

* Knowledge Representation
* NLP
* Logic
* Bayesnets
* Optimization: MCMC
* HMM

* Today: reinforcement learning part 1

Admin

* (programming) exercise MCMC — announced today
* Due in 1 week in class, as usual

Decisions and planning

 Thus far:

e Learning from examples _..[AGENT J_
* Knowledge representation /language ’

* inference/prediction Sensation Reward

* Missing: actions/decisions {ENWRONMENT}
e Learn from interaction

* RL:
* no supervisor, only a reward signal
* Feedback is delayed

e Time really matters (sequential, non i.i.d data)
* Agent’sactions affect the subsequent data it receives

Action

RL - examples

* Fly stunt maneuversin a helicopter

* Defeat the world champion at Backgammon (& Go)
* Control a power station

* Make a humanoid robot walk

* Play Atari games better than humans

Reward hypothesis

e Agent goal: maximize cumulative reward

* Hypothesis: All goals can be described by the maximization of
expected cumulative reward (?)

* Examples:

* Fly stunt maneuvers in a helicopter:
+ve reward for following desired trajectory —ve reward for crashing

e Backgammon:
+/-ve reward for winning/losinga game

* Make a humanoid robot walk:
+ve reward for forward motion -ve reward for falling over

* Play many different Atari games:
+/-ve reward for increasing/decreasing score

Sequential decision making

* Agent takes action
* Nature responds with reward
* Agent sees observation

* Agent has internal state (from all previous observations)
s¢ = f(Hy), Hy ={01,1, Q4,0 0¢_1,1t_1,Q¢_1, 0¢, Tt}
* Markovian assumption: state, observation, reward

are independent on past given current state
Pr| s¢[s;—1] = Pr[s¢|sy, ..., Se—1]

Sensation

———'[AGENT

]

Reward

}_

—{ENW

RONMENT

]k

Action

Markovian?

e State? Actions? Rewards?

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

upP

-1 80% move UP
10% move LEFT
10% move RIGHT

START
reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step
e states
* actions
* rewards

e what is the solution?

Is this a solution?

> = =

4 -1

*

e onlyif actions deterministic
* notin thiscase (actionsare stochastic)

* solution/policy
* mappingfrom each statetoan action

Optimal po

Icy

-

*

*

Reward for each step -2

-

-)

-)

*

-)

-)

-

-

Reward for each step:-0.1

-

-)

-)

+1

*

*

-1

*

-

*

-

Reward for each step: -0.04

-

-)

-)

+1

*

*

-1

*

-

-

-

Reward for each step: -0.01

-

-)

-)

+1

*

-

-1

*

-

-

d

Reward for each step: +0.01

¥

-

-

+1

¥

-

-1

-

-

-

\ 4

Formal model: Markov Decision Process

e States: Markov Process (chain)
e Rewards: Markov Reward Process
* Decisions: Markov Decision Process

Markov Process: the student chain

| . 1
| “--
| "B 0.9 0.1

facebook
C 0.5 0.4 0.1
0.5 0.5
P
1
S

Example: the student chain

* Example of episodes (random
walks):

(000K | * CCFbFbCPS

* CFbFbFbFbCPS

Markov Reward Process: the student REWARD chain

Facebook
R=-1

Example: the student REWARD chain

Markov Reward Process, definition:
* Tuple(S,P,R,y) where ' ‘

S =states, including start state S o
* P=transition matrix P, = Pr[Spyq = 5'|S; = s] |
* R =rewardfunction, Ry = E[R;41|S; = S]

* ¥ €[0,1] = discount factor

* Return .
Gy = z Repiyt?

i=1to

0.5

Exponentially diminishingreturns
why?

cy=0?y=1?
With discountfactor< 1 > G, alwayswell defined, regardless of stationarity

Example: the student REWARD chain

, 0s °* Example of episode (random
‘ ' walks): discount factor = %

Facebook - e« CCEbFEbS
R=-1

total reward = ,

1
Gy =2+2%=+ (-1 (—
1 + *2+() * 2) +1

=3 —0.365 = 2.635

* CFbFbFbFbCPS

G,=?

The Value function

* Mapping from states to real numbers:

v(s) = E[G¢|S; = s¢]

Value function,y = 0

‘ . 0.8

Facebook
R=-1
V=-1
C 0.5 0.4 0.1
0.5 0.5
P
1
S

v(s) = E[G¢|S; = 5¢]

z Rt+zyl !

i=1to

Computing the value function

* How can we compute it?

v(s) = E[G¢|S; = s¢]

The Bellman equation for MRP

v(s) =R, + yz P.v(s")

P,,, = transition
probability from sto s’

The Bellman equation for MRP

U(S) = E[G¢|S; = s]

=E Z Vl 1Rt+l |St_S]
1tooo

e

= E|Rey1+Y z Vo Rpp14 ISt =5

i=1to o

= E[R¢y1+¥Gry1| St = 5]

= E[R¢y1+ ¥ v(Se4+1)| S¢ = 5]

P,,, = transition
probability from sto s’

|

R=

£}

Facebook 0.1

&’

0.5

Bellman equation in matrix form

* How can we computeit?

v(s) = R+)/Z P..v(s")
v=R+yPv°

For v being the vector of values v(s), R being vectorin same space of
R(s),Vs € S, and P being the transition matrix. Thus,

v=(-yP) IR

System of linear equations (Gaussian elimination, cubic time)

Markov Decision Process

Markov Reward Process, definition:
* Tuple(S,P,R,A,y) where

e S =states, includingstart state

A = set of possible actions

P =transition matrix P%, = Pr[S;y1 = S'|S¢ = 5,4 = a]
R =reward function, R = E[R;11|S¢ = s, A = a

vy € [0,1] = discount factor

* Return

Gy = z Reyiy' !

[=1to o

e Goal: take actions to maximize expected return

Policies
The Markovian structure =» best action depends only on current state!

* Policy = mapping from state to distribution over actions
m:S - A(A), n(als) = Pr[A, = a|S; = 5]

* Given a policy, the MDP reduces to a Markov Reward Process

Reminder: MDP1

actions: UP, DOWN, LEFT, RIGHT

upP

-1 80% move UP
10% move LEFT
10% move RIGHT

START
reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step
e states
* actions
* rewards

* Policies?

Reminder 2

 State? Actions? Rewards? Policy?

Policies: action = study

Facebook
R=-1

Policies: action = facebook

Facebook
R=-1

Fixed policy = Markov Reward process

* Given a policy, the MDP reduces to a Markov Reward Process

* PSZ! — ZaEA n(a|s) Pscsl:l

* RT = ¥ 4cam(als) RS

* Value function for policy: v,(s) = E;[G;|S; = s]

* Action-Value function for policy: q.(s,a) = E.[G.|S; =s,A; = a]

* How to compute the best policy?

The Bellman equation

* Policies satisfy the Bellman equation:

v (s) = En[Rt+1 + ¥V Ur(Se+1)| St = s] = RS + VZ ng'vn(sl)
S

e And similarly for value-action function:

v, (s) = z (als)q, (s, a)

acA
e Optimal value function, and value-action function
*v.(s) = max{v:(s)} q.(s,a) = max{gr(s, a)}

* Important: v,(s) = maxq.(s,a), why?
a

Theorem

* There existsan optimal policy m, (itis deterministic!)

* All optimal policy achieve the same optimal value v, (s) at every state, and the same
optimal value-action function g.. (s, afat every state and for every action.

 How can we findit? Bellman equation:v.(s) = max {g.(s,a)} implies Bellman
optimality equations:

0.(s,0) = RE +y) P& max {q.(,a))

v, (s) = maX{Ra +y ZPa,v*(s’)}

Summary
* Markov Reward Process — generalization of Markov Chains

* Markov Decision Processes — formalization of learning with state from
environment observations in a Markovian world.

* Bellman equation: fundamental recursive property of MDPs

* Will enable algorithms (next class...)

