
Lecture	18:	Reinforcement	Learning
Sanjeev	Arora	 Elad	Hazan

COS	402	– Machine	
Learning	and	

Artificial	Intelligence
Fall	2016

Some	slides	borrowed	 from	Peter	Bodik and	David	Silver



Course	progress

• Learning	from	examples
• Definition	+	fundamental	theorem	of	statistical	learning,	motivated	efficient	
algorithms/optimization

• Convexity,	greedy	optimization	– gradient	descent
• Neural	networks

• Knowledge	Representation
• NLP
• Logic
• Bayes	nets	
• Optimization:	MCMC
• HMM

• Today:	reinforcement	learning	part	1



Admin

• (programming)	exercise	MCMC	– announced	today
• Due	in	1	week	in	class,	as	usual



Decisions	and	planning

• Thus	far:	
• Learning	from	examples
• Knowledge	representation	/	language
• inference/prediction

• Missing:	actions/decisions
• Learn	from	interaction

• RL:
• no	supervisor,	only	a	reward	signal	
• Feedback	is	delayed
• Time	really	matters	(sequential,	non	i.i.d data)	
• Agent’s	actions	affect	the	subsequent	data	it	receives



RL	- examples

• Fly	stunt	maneuvers	in	a	helicopter
• Defeat	the	world	champion	at	Backgammon	(&	Go)
• Control	a	power	station	
• Make	a	humanoid	robot	walk	
• Play	Atari	games	better	than	humans



Reward	hypothesis

• Agent	goal:	maximize	cumulative reward
• Hypothesis:	All goals	can	be	described	by	the	maximization	of	
expected	cumulative	reward		(?)
• Examples:
• Fly	stunt	maneuvers	in	a	helicopter:
+ve reward	for	following	desired	trajectory	−ve reward	for	crashing

• Backgammon:
+/−ve reward	for	winning/losing	a	game

• Make	a	humanoid	robot	walk:
+ve reward	for	forward	motion	−ve reward	for	falling	over	

• Play	many	different	Atari	games:
+/−ve reward	for	increasing/decreasing	score



Sequential	decision	making

• Agent	takes	action
• Nature	responds	with	reward
• Agent	sees	observation	
• Agent	has	internal	state	(from	all	previous	observations)

𝑠" = 𝑓 𝐻" , 		 𝐻" = {𝑜*, 𝑟*, 𝑎*,… , 𝑜".*, 𝑟".*, 𝑎".*, 𝑜", 𝑟"}
• Markovian	assumption:	state,	observation,	reward	
are	independent	on	past	given	current	state
Pr[	𝑠"|𝑠".*] = Pr[	𝑠"|𝑠*, … , 𝑠".*]



Markovian?

• State?	Actions?	Rewards?	



Robot	in	a	room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

• states
• actions
• rewards

• what	is	the	solution?



Is	this	a	solution?

+1

-1

• only	if	actions	deterministic
• not	in	this	case	(actions	are	stochastic)

• solution/policy
• mapping	from	each	state	to	an	action



Optimal	policy

+1

-1



Reward	for	each	step	-2

+1

-1



Reward	for	each	step:	-0.1

+1

-1



Reward	for	each	step:	-0.04

+1

-1



Reward	for	each	step:	-0.01

+1

-1



Reward	for	each	step:	+0.01

+1

-1



Formal	model:	Markov	Decision	Process

• States:	Markov	Process	(chain)
• Rewards:	Markov	Reward	Process
• Decisions:	Markov	Decision	Process



Markov	Process:	the	student	chain

Class	

Party

sleep
facebook

FB C P S

0.9 0.1

0.5 0.4 0.1

0.5 0.5

1

FB

C

P

S

0.9

0.5

0.1

0.1

0.5

0.4

0.5

1



Example:	the	student	chain

Class	

Party

sleep
facebook

0.9

0.5

0.1

0.1

0.5

0.4

0.5

• Example	of	episodes	(random	
walks):

• C	C	Fb	Fb	C	P	S	

• C	Fb	Fb	Fb	Fb	C	P	S	

1



Markov	Reward	Process:	the	student	REWARD chain

Class
R=2	

Party
R=1

Sleep
R=0Facebook

R=-1

FB C P S

0.9 0.1

0.5 0.4 0.1

0.5 0.5

1

FB

C

P

S

0.9

0.5

0.1

0.1

0.5

0.4

0.5

0.8



Example:	the	student	REWARD chain

Class
R=2	

Party
R=1

Slee
p
R=0Facebook

R=-1

0.9

0.5

0.1

0.1

0.5

0.4

0.5

0.8
Markov	Reward	Process,	definition:	
• Tuple	(𝑆, 𝑃, 𝑅, 𝛾) where

• S	=	states,	including	start	state
• P	=	transition	matrix				𝑃;;< = Pr[𝑆"=* = 𝑠′|𝑆" = 𝑠]
• R	=	reward	function,	𝑅; = 𝐸[𝑅"=*|𝑆" = 𝑠]
• 𝛾 ∈ [0,1]	=	discount	factor

• Return
𝐺" = D 𝑅"=E𝛾E.*

EF*	"G	H
•
Exponentially	diminishing	returns
why?

• 𝛾 = 0?	𝛾 = 1?
• With	discount	factor	<	1		à Gt always	well	defined,	regardless	of	stationarity



Example:	the	student	REWARD chain

Class
R=2	

Party
R=1

Sleep
R=0Facebook

R=-1

0.9

0.5

0.1

0.1

0.5

0.4

0.5

0.8 • Example	of	episode	(random	
walks):	discount	factor	=	½	

• C	C	Fb	Fb	S	

total	reward	=

𝐺* = 2 + 2 ∗
1
2
+ −1 ∗

1
2

M

+

−1 ∗ 0.5P + 0 = 2 + 1 −
1
4
−
1
8= 3 − 0.365 = 2.635

• C	Fb	Fb	Fb	Fb	C	P	S	

G1	=	?



The	Value	function

Class
R=2	

Party
R=1

Slee
p
R=0Facebook

R=-1

0.9

0.5

0.1

0.1

0.5

0.4

0.5

0.8• Mapping	from	states	to	real	numbers:

𝑣 𝑠 = 𝐸[𝐺"|𝑆" = 𝑠"]



Value	function,	𝛾 = 0

Class
R=2
V=2	

Party
R=1
V=1

Sleep
R=0
V=0

Facebook
R=-1
V=-1

FB C P S

0.9 0.1

0.5 0.4 0.1

0.5 0.5

1

FB

C

P

S

0.9

0.5

0.1

0.1

0.5

0.4

0.5

0.8

𝑣 𝑠 = 𝐸[𝐺" |𝑆" = 𝑠"]

𝐺" = D 𝑅"=E𝛾E.*
EF*	"G	H



Computing	the	value	function

Class
R=2	

Party
R=1

Slee
p
R=0Facebook

R=-1

0.9

0.5

0.1

0.1

0.5

0.4

0.5

0.8• How	can	we	compute	it?	

𝑣 𝑠 = 𝐸[𝐺"|𝑆" = 𝑠"]



The	Bellman	equation	for	MRP

Class
R=2	

Party
R=1

Slee
p
R=0Facebook

R=-1

0.9

0.5

0.1

0.1

0.5

0.4

0.5

0.8

𝑣 𝑠 = 𝑅; + 𝛾D𝑃;;V𝑣(𝑠<)
;

𝑅; = 𝐸 𝑅"=*|	𝑆" = 𝑠

𝑃;;<=	transition	
probability	 from	s	to	s’



The	Bellman	equation	for	MRP

Class
R=2	

Party
R=1

Slee
p
R=0Facebook

R=-1

0.9

0.5

0.1

0.1

0.5

0.4

0.5

0.8𝑣 𝑠 = 𝐸 𝐺" 𝑆" = 𝑠
	
= 𝐸 D 𝛾E.*𝑅"=E			

EF*	"G	H
|	𝑆" = 𝑠

	
	
= 𝐸 𝑅"=* + 𝛾 D 𝛾E.*𝑅"=*=E			

EF*	"G	H
|	𝑆" = 𝑠

	
	
= 𝐸 𝑅"=* + 𝛾𝐺"=*|	𝑆" = 𝑠
	
		
= 𝐸 𝑅"=* + 𝛾	𝑣(𝑆"=*)|	𝑆" = 𝑠
	
	
= 𝑅; + 𝛾D𝑃;;V 𝑣(𝑠<)

;

𝑅; = 𝐸 𝑅"=*|	𝑆" = 𝑠

𝑃;;<=	transition	
probability	 from	s	to	s’



Bellman	equation	in	matrix	form

• How	can	we	compute	it?	

𝑣 𝑠 = 𝑅; + 𝛾D𝑃;;V𝑣(𝑠<)
;𝑣 = 𝑅 + 𝛾	𝑃	𝑣

For	𝑣 being	the	vector	of	values	𝑣(𝑠),		R	being	vector	in	same	space	of	
𝑅 𝑠 ,∀𝑠 ∈ 𝑆	,	and	P	being	the	transition	matrix.	Thus,

𝑣 = 𝐼 − 𝛾𝑃 .*𝑅

System	of	linear	equations	(Gaussian	elimination,	cubic	time)



Markov	Decision	Process

Markov	Reward	Process,	definition:	
• Tuple	(𝑆,𝑃, 𝑅, 𝐴, 𝛾) where

• S	=	states,	including	start	state
• A	=	set	of	possible	actions
• P	=	transition	matrix				𝑃;;<Z = Pr[𝑆"=* = 𝑠′|𝑆" = 𝑠,𝐴" = 𝑎]
• R	=	reward	function,	𝑅	;Z = 𝐸[𝑅"=*|𝑆" = 𝑠, 𝐴" = 𝑎]
• 𝛾 ∈ [0,1]	=	discount	factor

• Return
𝐺" = D 𝑅"=E𝛾E.*

EF*	"G	H	
• Goal:	take	actions	to	maximize	expected	return



Policies

The	Markovian	structure	è best	action	depends	only	on	current	state!	

• Policy	=	mapping	from	state	to	distribution	over	actions
𝜋: 𝑆 ↦ Δ(𝐴), 𝜋 𝑎 𝑠 = Pr[𝐴" = 𝑎|𝑆" = 𝑠]	

• Given	a	policy,	the	MDP	reduces	to	a	Markov	Reward	Process



Reminder:	MDP1

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

• states
• actions
• rewards

• Policies?



Reminder	2

• State?	Actions?	Rewards?	Policy?



Policies:		action	=	study

Class
R=2	

Party
R=1

Sleep
R=0Facebook

R=-1

0.1

0.1

0.9

0.1

0.1

0.1

0.9

0.8

0.8



Policies:		action	=	facebook

Class
R=2	

Party
R=1

Sleep
R=0Facebook

R=-1

0.9

0.9

0.1

0.1

0.1

0.05

0.9

0.8

0.05



Fixed	policy	àMarkov	Reward	process

• Given	a	policy,	the	MDP	reduces	to	a	Markov	Reward	Process

• 𝑃;;<_ = ∑ 𝜋 𝑎 𝑠Z∈a 𝑃;;<Z

• 𝑅;_ = ∑ 𝜋 𝑎 𝑠Z∈a 𝑅;Z

• Value	function	for	policy:			𝑣_ 𝑠 = 𝐸_[𝐺"|𝑆" = 𝑠]
• Action-Value	function	for	policy:			𝑞_ 𝑠, 𝑎 = 𝐸_[𝐺"|𝑆" = 𝑠, 𝐴" = 𝑎]

• How	to	compute	the	best	policy?	



The	Bellman	equation

• Policies	satisfy	the	Bellman	equation:

𝑣_ 𝑠 = 𝐸_ 𝑅"=* + 𝛾	𝑣_(𝑆"=*)|	𝑆" = 𝑠 = 𝑅;_ + 𝛾D𝑃;;V
_ 𝑣_(𝑠<)

;
• And	similarly	for	value-action	function:

𝑣_ 𝑠 =D 𝜋 𝑎 𝑠 𝑞_(𝑠, 𝑎)
Z∈a

• Optimal	value	function,	and	value-action	function
• 𝑣∗ 𝑠 = max

_
	 𝑣_ 𝑠 									𝑞∗ 𝑠, 𝑎 = max

_
	 𝑞_(𝑠, 𝑎)

• Important:				𝑣∗ 𝑠 = max
Z
𝑞∗(𝑠, 𝑎),		why?	



Theorem

• There	exists	an	optimal	policy	𝜋∗ (it	is	deterministic!)
• All	optimal	policy	achieve	the	same	optimal	value	𝑣∗(𝑠) at	every	state,	and	the	same	
optimal	value-action	function	𝑞∗ 𝑠, 𝑎 at	every	state	and	for	every	action.	

• How	can	we	find	it?			Bellman	equation:	𝑣∗ 𝑠 = max
Z
	 𝑞∗(𝑠, 𝑎) implies	Bellman	

optimality	equations:

𝑞∗ 𝑠, 𝑎 = 𝑅;Z + 𝛾	D𝑃;;<Z
;<

max
Z<
	 𝑞∗(𝑠′,𝑎′)

𝑣∗ 𝑠 = max
Z

𝑅;Z + 𝛾	D𝑃;;V
Z 𝑣∗(𝑠<)

;<



Summary

• Markov	Reward	Process	– generalization	of	Markov	Chains

• Markov	Decision	Processes	– formalization	of	learning	with	state	from	
environment	observations	in	a	Markovian	world.	

• Bellman	equation:	fundamental	recursive	property	of	MDPs

• Will	enable	algorithms	(next	class…)


