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Plan for today 

• Part 1: Rational choice theory. (Major achievement of first half of 20th 
century; quantifies rational decision-making for a computationally 
unlimited decision-maker. Important in economics, social sciences,..)  
 

•  Part 2: Decision-making when one has limited knowledge, or limited 
computation power.  

(General theme of next few lectures: rational decision making.)  



Rational Decision Making 

Think about some important decision you took: e.g. 
 which university to attend, which course to take,… 

What did “rational decision-making” mean to you 
in those settings? 



Rational Choice Theory: Ingredients 

• We have an inbuilt  “satisfaction”/”utility”/”reward”  
which seems to motivate us.   
 

•  We take a series of actions, and their consequences 
continue to unfold far into future.  
 

• Our decision-making seeks to maximise reward/utility 
over this series of actions.  

Reactions to this formalization? Objections?  

(Theory runs into well-known controversies when applied to human decision-making, 
but OK as a framework for designing autonomous agents.) 



Example: Cake Eating 

• You receive a cake. It will go bad after 5 days.  
 

• On any given day, if you eat x percent of the cake, you get utility 𝑥 
 

• How much cake should you eat each day?  

If xi percent eaten on day i  (i=1, 2, 3,…), then  net utility U = 𝑥1 + 𝑥2 
 +..+  𝑥5  

Since there is no utility in leaving cake uneaten, the xi  ‘s must sum to 100%.  

Calculus says maximum achieved when ∂U/ ∂xi is the same for all i 
(else  can improve utility by  reallocating).  

 for xi = 20% for all i.   
 



Cake eating with sneaky roommate. 

• You receive a cake. It will go bad after 5 days.  

• On each day you are allowed to each any multiple of 20%. If you eat x percent of 
the cake, you get utility 𝑥. 

• Each night, with probability ½, your roommate eats 20% of the cake (if there is 
any left in the fridge). 

• What is your optimum cake eating schedule now?  

(handwritten slide from ipad) 



Evaluating tree of all possibilities: dynamic programming 

At each node, need to decide which of available options 
is the best. 

Expand the tree from each child node and compute 
the utility obtained from optimum decision-making  
within each subtree.   

Choose the decision which leads to best 
expected utility. 



Rational Choice Theory (summary) 

• Your utility/reward function.  

•  Set of possible actions at each step. 

• Knowledge of possible events that may happen and affect your net utility; you 
know the distribution of these events ahead of time. 

•  You take actions that maximise your expected utility.  

You as decision-maker know the following:  

Optimum decision can be computed using tree of all possibilities (“search tree.”) 
(But if T steps of actions, search tree may have size exponential in T ) 

In CS often talk about minimizing “cost” 
instead of maximising utility.   
(”Cost” = - utility.) 

Has been used in social science to study human decisions: why do people get married,  
how they save for retirement etc…. 



Input: Directed graph G = (V, E).  
 
Start at some node s.  
Looking for a node with a “jackpot.”  
Basic set of actions: explore an outgoing edge from the node you happen to be at.   

Application: Solving puzzles.  
 
(What is the “graph” here?) 

Subcase 1: Graph search.    
 (Deterministic; no probabilistic events)  



A classic puzzle  
(from 9th century France; variations arose independently in many 
cultures) A farmer must transport a fox, goat and box of beans 

from one side of a river to another using a boat which 
can only hold one item. 
 

The fox cannot be left alone with the goat, and the goat 
cannot be left alone with the beans. 

 
 

How to reason out a plan? 

 

(Recap from Lecture 1)  

Ans: Write a search tree. Cost - ∞ if  
something eats something;   cost 1 for  
each river crossing.  



Graph Search (Iterated Depth First Search) 

DFS-Search(u, t)    
 /* u=start node, t=depth of 
search*/ 
{ if u= jackpot, return “success”; 
  if t=0; return failure. 
 
 for all neighbors v of u,  
   {         If Search(v, t-1); 
 returns “success,” return 
 success.  
   } 
Return failure. 
} 
 
      

Call DFS-Search(s, t) with t=1, 2, 3,… 
 
Analysis 
 
B = maximum degree of any node 
d = minimum distance from s to a jackpot 
node. 
 
Running time ≤ bd . 
 

Space ≤  O(d)  

Recall: Memory is a more severe constraint 
than running time; computation must fit in RAM! 



Application 2: Game playing 

Important subcase: Zero-sum game   
(what one player wins, the other loses) 
 
Example: Chess, Checkers, Tic-tac-toe  etc. 

2 players. Take turns making moves.  
At the end, win/lose some amount.  
(Chess, Checkers, Tennis, …) 

Example of a game that is not zero sum: War between countries. (Both could be  
destroyed.)  



Game tree: tree of all possible moves. 

1.c Tic-Tac-Toe – game tree (depth 2)?
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Example: Tic-tac-toe   (loser gives $1 to winner; no money exchanged for a draw) 



Minimax tree search for zero-sum games 
1.c Tic-Tac-Toe – game tree (depth 2)?

X

XXX

X X

X X X

(1)              (2)              (3)              (4)                (5)             (6)             (7)              (8)   (9)

Depth 1

1.c Tic-Tac-Toe – game tree (depth 2)?
X

X

O

X

O

X OX O X

O

X

O

X

O

X

O

Depth 2

Depth 1
(1) Minimax tree search.  

Payoff = net payment by  player 1 to player 2. 
 
Player 1 picks tries to make moves that minimize payoff 
at the end, whereas Player 2 makes moves that maximise.  



Minimax tree search (contd) 

At each node, need to decide which of available options 
is the best. Assume opponent plays optimally. 

Player 1’s turn: Expand tree from each child 
 node and compute payoff obtained from  
optimum decision-making  within each subtree.   
Choose move that minimizes payoff. 

Player 2’s turn: Expand tree, compute payoffs of  
subtrees. Pick move that maximises payoff.  
Choose move that maximizes payoff.  

Payoff = net payment by  player 1 to player 2. 
 



Example of minimax tree search 



Part 2: Heuristic Search 
(Making tree evaluation more efficient) 
 

Size of minimax tree can be exponential in # of moves. 

For tic-tac-toe:  about 5 actions possible per move; 
so 59  possible games. (approx 2 million; no big deal) 

Chess: About 35 possible moves (estimated) at each time; 
100 moves in a chess match. 
 
 Search tree has size 35100   (> # of atoms in the universe!) 



Approximation 1: Limited lookahead 

Select next move by looking ahead only k moves.   (i.e., truncate search tree) 
Use a heuristic “valuation function” to rate the board position after k moves. 

K = 4 (i.e., 2 moves by you and 2 by opponent).  Does as well as novice player. 
(354  = 1.5 million.) 
 
K= 8: Chess expert. (358  = 2.25 trillion; takes a few minutes on computer) 
 

K=12: Grandmaster/champion level    (3512 = infeasible for supercomputers) 



Evaluation function 

For chess, usually a linear weighted 
function of features. 
 
 
 
 
 
 
 
 
 
There could be a weighting for each piece remaining,   for pawns close to promotion, pieces free to move,  
etc… 
  

 



Alpha-Beta Search 

Suppose player is looking ahead k moves. 

Exploring the tree rooted at first move 
showed a reward of 21 (e.g., captured 
the other player’s queen) 

35 possible  
moves 

21 

Now it never pays to explore another subtree as 
soon as we determine that the total reward cannot 
be higher than 20.  



Alpha-beta example.  

Greyed -out  
nodes do not  
need to be 
explored 

Evaluated 
left to 
right. 



Iterative Deepening Search 

• Go k steps; evaluate. 

•  Use alpha-beta to prune search tree. 

•  Go another few levels… 
 

 

Many many extensions, as you can imagine. 



Obvious generalizations of these ideas to games that depend 
upon chance (eg roll of dice,  or randomly dealt cards) 
(use expected reward instead of reward) 
 
 

Next few lectures: Reinforcement Learning.  
(decision-making by autonomous agents)  


