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Course	progress

• Learning	from	examples
• Definition	+	fundamental	theorem	of	statistical	learning,	motivated	efficient	
algorithms/optimization
• Convexity,	greedy	optimization	– gradient	descent
• Neural	networks

• Knowledge	Representation
• NLP
• Logic
• Bayes	nets	
• Optimization:	MCMC		(TODAY)

• Next:	reinforcement	learning



Goal:	inference	in	Bayes	networks

30 Bayesian Artificial Intelligence, Second Edition

Throughout the remainder of this section we will use the following simple medi-
cal diagnosis problem.
Example problem: Lung cancer. A patient has been suffering from shortness of
breath (called dyspnoea) and visits the doctor, worried that he has lung cancer. The
doctor knows that other diseases, such as tuberculosis and bronchitis, are possible
causes, as well as lung cancer. She also knows that other relevant information in-
cludes whether or not the patient is a smoker (increasing the chances of cancer and
bronchitis) and what sort of air pollution he has been exposed to. A positive X-ray
would indicate either TB or lung cancer.2

2.2.1 Nodes and values
First, the knowledge engineer must identify the variables of interest. This involves
answering the question: what are the nodes to represent and what values can they
take, or what state can they be in? For now we will consider only nodes that take dis-
crete values. The values should be both mutually exclusive and exhaustive, which
means that the variable must take on exactly one of these values at a time. Common
types of discrete nodes include:

• Boolean nodes, which represent propositions, taking the binary values true (T )
and false (F). In a medical diagnosis domain, the node Cancer would represent
the proposition that a patient has cancer.

• Ordered values. For example, a node Pollution might represent a patient’s pol-
lution exposure and take the values {low, medium, high}.

• Integral values. For example, a node called Age might represent a patient’s age
and have possible values from 1 to 120.

Even at this early stage, modeling choices are being made. For example, an alter-
native to representing a patient’s exact age might be to clump patients into different
age groups, such as {baby, child, adolescent, young, middleaged, old}. The trick is to
choose values that represent the domain efficiently, but with enough detail to perform
the reasoning required. More on this later!

TABLE 2.1
Preliminary choices of nodes and
values for the lung cancer example.

Node name Type Values
Pollution Binary {low, high}
Smoker Boolean {T, F}
Cancer Boolean {T, F}
Dyspnoea Boolean {T, F}
X-ray Binary {pos, neg}

2This is a modified version of the so-called “Asia” problem Lauritzen and Spiegelhalter, 1988, given
in §2.5.3.

Pollution Smoking

Cancer

X-ray Dyspnoea



How	to	sample	from	a	distribution?

• How	to	generate	a	random	number?	

• Von-Neumann’s	coin
given	a	biased	coin	– turns	up	heads	w.p.	p	≠ "

#
how	to	generate	a	random	bit?



How	to	sample	from	a	distribution?

• How	to	generate	a	random	number?	

• Von-Neumann’s	coin:

• From	now	on:	assume	we	have	access	to	U[0,1]
• Uniformly	at	random	on	an	interval?	
• Exponential?	



Inverse	transform	method

• Cumulative	distribution	function



Inverse	transform	method

• Let	𝐹:𝑅 ↦ [0,1] be	the	CDF	we	want	to	sample	from,	
let
𝐹-": 0,1 ↦ 𝑅 be	its	inverse.	

• Algorithm:	sample	𝑌 ∼ 𝑈[0,1] and	return	X = 	𝐹-"(𝑌)
• Theorem:	𝑋 ∼ 𝐹

• Exponential	distribution:	F x = 1− e-;< for	x ≥ 0,	
so	sample	y ∼ 𝑈[0,1],	and	return	−"

; 	ln	(1 − 𝑦)	
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How	to	sample	from	a	distribution?

• How	to	generate	a	random	number?	

• Von-Neumann’s	coin:

• From	now	on:	assume	we	have	access	to	U[0,1]
• Uniformly	at	random	on	an	interval?	
• Exponential?
• Gaussian/Normal?			



Normal	random	variable	(Gaussian)

PDF	and	CDF:

why	can’t	we	use	inverse	transform?



Gaussian	sample:	Box-Muller	algorithm	

• Idea	– convert	to	radial	basis
Sample	two	variables	r ∼ exp "

#
, 𝜃 ∼ 𝑈[0,1] and	return	the	

Cartesian	coordinates:	
X = r cos 𝜃 , 𝑌 = 𝑟 sin 𝜃



Gaussian	sample:	Box-Muller	algorithm	

• Idea	– convert	to	radial	basis
Sample	two	variables	r ∼ exp "

#
, 𝜃 ∼ 𝑈[0,1] and	return	the	

Cartesian	coordinates:	
X = r cos 𝜃 , 𝑌 = 𝑟 sin 𝜃

• Theorem: X, Y ∼ 𝑁[0,1] and	are	independent

• Proof	idea:	sampling	to	i.i.d normal	RV,	is	rotation	symmetric,	and	
radius	distributed	as	exp(1/2).		



How	to	sample	from	a	distribution?

• Sampling	from	a	multi-dimensional	distribution?
• Inverse	transform	->	many	times	hard	to	compute
• other	methods	(importance	sampling,	etc.)	degrade	exponentially	with	the	
dimension
• Many	times	provably	computationally	hard
• But	also	very	important!	



Los	Alamos	simulations

• Need	to	simulate	complicated	multi-particle	experiments
• 0-1	assignment,	
valid	configuration:	“no	neighboring	1’s”



Sampling	in	Bayes	networks??

30 Bayesian Artificial Intelligence, Second Edition

Throughout the remainder of this section we will use the following simple medi-
cal diagnosis problem.
Example problem: Lung cancer. A patient has been suffering from shortness of
breath (called dyspnoea) and visits the doctor, worried that he has lung cancer. The
doctor knows that other diseases, such as tuberculosis and bronchitis, are possible
causes, as well as lung cancer. She also knows that other relevant information in-
cludes whether or not the patient is a smoker (increasing the chances of cancer and
bronchitis) and what sort of air pollution he has been exposed to. A positive X-ray
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take, or what state can they be in? For now we will consider only nodes that take dis-
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the proposition that a patient has cancer.

• Ordered values. For example, a node Pollution might represent a patient’s pol-
lution exposure and take the values {low, medium, high}.

• Integral values. For example, a node called Age might represent a patient’s age
and have possible values from 1 to 120.

Even at this early stage, modeling choices are being made. For example, an alter-
native to representing a patient’s exact age might be to clump patients into different
age groups, such as {baby, child, adolescent, young, middleaged, old}. The trick is to
choose values that represent the domain efficiently, but with enough detail to perform
the reasoning required. More on this later!

TABLE 2.1
Preliminary choices of nodes and
values for the lung cancer example.

Node name Type Values
Pollution Binary {low, high}
Smoker Boolean {T, F}
Cancer Boolean {T, F}
Dyspnoea Boolean {T, F}
X-ray Binary {pos, neg}

2This is a modified version of the so-called “Asia” problem Lauritzen and Spiegelhalter, 1988, given
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Pollution Smoking

Cancer

X-ray Dyspnoea

𝑃[𝑋M = 𝑎M|𝑋" = 𝑎", … , 𝑋Q = 𝑎Q, 𝑋R =? ] =	?
𝑃[𝑋" = 𝑎"|𝑋T = 𝑎T] =	?



The	MCMC	paradigm

“to	sample	from	a	distribution	p,	design a	Markov	Chain	whose	
stationary	distribution	is	𝜋 = 𝑝.			Then	simulate	the	Markov	Chain	and	
sample	from	it	after	it	has	mixed	(reached	stationarity).“



The	MCMC	paradigm

“to	sample	from	a	distribution	p,	design a	Markov	Chain	whose	
stationary	distribution	is	𝜋 = 𝑝.			Then	simulate	the	Markov	Chain	and	
sample	from	it	after	it	has	mixed	(reached	stationarity).“

1. What	is	a	Markov	Chain	&		stationary	dist.	?
2. When	does	it	have	a	stationary	distribution	and	how	to	find	it	/	

sample	from	it	efficiently?	
3. How	to	design	a	Markov	Chain	for	a	given	distribution?	



Markov	Chain

26

Markov chain with three states (s = 3)

Markov Chains Example

Transition graphTransition matrix

Directed	graph,
and	a	transitition
matrix	giving,	for	
each	i,	j				the	
probability	of	
stepping	to	j	when	at	i.



Markov	Chains	– usage	and	examples

Common	example:			PageRank	(google’s webpages	initial	ranking	system)

Webgraph:
Nodes	=	webpages		,		Edges	=	hyperlinks

𝑇MR =	probability	to	move	from	page	i to	page	j	=	X
"
YZ
		 𝑖, 𝑗 ∼ 𝐸

0													𝑜/𝑤
	

𝑑M =	degree	(outgoing	links)	from	page	i

PageRank	score	for	page		=		𝜋 𝑖 =	prob.	in	stationary	distribution!	



Random	Walks	in	a	Markov	Chain

26

Markov chain with three states (s = 3)

Markov Chains Example

Transition graphTransition matrix

Starting	from	state	i,	the	distribution	
after	one	step	is	given	by

𝑝" = 𝑒M	, 𝑝# = 𝑒M𝑇

After	n	steps:
𝑝Q = 𝑒M𝑇 ∗ 𝑇 ∗ ⋯ ∗ 𝑇 = 𝑒M𝑇Q-"

Let:	
𝜋 = lim

Q↦f
𝑒M𝑇Q



Random	Walks	in	a	Markov	Chain

26

Markov chain with three states (s = 3)

Markov Chains Example

Transition graphTransition matrix

Let:	
𝜋 = lim

Q↦f
𝑒M𝑇Q

Thus,	
𝜋𝑇 = 𝜋

”stationary	distribution”



Random	Walks	in	a	Markov	Chain
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Markov chain with three states (s = 3)

Markov Chains Example

Transition graphTransition matrix

For	this	MC:	
𝑝" = 𝑒" = (1,0,0)
𝑝# = 𝑒"𝑇 = (0,1,0)

𝑝g = 𝑝#𝑇 = (0,0.1,0.9)
𝑝j = 𝑝g𝑇 = (0.54,0.37,0.09)

…
𝜋 = 𝑝f ≈ (0.22,0.41,0.37)



Stationary	Distribution

27

Definition:

[stationary distribution, invariant distribution, steady state distributions]

Markov Chains, 
stationary distribution 

The stationary distribution might be not unique (e.g. T= identity matrix)

Distribution ⇡ = (⇡1, . . . ,⇡m) is stationary if ⇡i � 0 8i,
X

i

⇡i = 1 and ⇡T = ⇡

(Taking	one	step	according	to	the	markov chain	leaves	this	distribution	unchanged)



Non-stationary	Markov	chains

1 2

1

1

“periodic”



Non-stationary	Markov	chains

1
2

1

0.5

2

0.5

1

“reducible”



Ergodic	theorem

Amazingly,	every	irreducible	and	a-periodic	Markov	chain	has	a	unique	
stationary	distribution,	and	every	random	walk	starting	from	any	node	
converges	to	it!	

à implication	to	PageRank…

Mixing	time	is:

𝑛r					𝑠. 𝑡.	 			 𝑒M𝑇Qu − 𝜋 ≤ 𝜖

In	general	– depends	polynomially in	#nodes,	very	hard	to	bound.
Many	times	in	practice	– depends	logarithmically	in	#nodes!



Designing	a	Markov	chain:	Metropolis-Hastings

Input:	distribution	we	wish	to	sample	from,	probability	of	even	i is	given	by		pi

Output:	sample	from	Markov	Chain	whose	stationary	distribution	is	𝜋 = 𝑝

MH	algorithm:		for	t=1,2,…,T
1. Start	in	arbitrary	state	i,	and	let	𝑠" = 𝑖
2. At	time	t,	pick	state	j	from	[n]	uniformly	at	random	(or	some	other	

“Reasonable”	distribution).	
3. Update	the	step	according	to	the	rule:	

sxy"	 = 	 z
𝑗			𝑤. 𝑝. 		min{1,

𝑝R
𝑝M
}

𝑠}																						𝑜/𝑤
4. Return	to	(2),	unless	t=T,	in	which	case	stop	and	return	st



Designing	a	Markov	chain:	Metropolis-Hastings

Theorem:			Markov	Chain	below	is	always	stationary	with	stationary	distribution	being	
𝜋 = 𝑝	

MH	algorithm:	for	t=1,2,…,T
1. Start	in	arbitrary	state	i,	and	let	𝑠" = 𝑖
2. At	time	t,	pick	state	j	from	[n]	uniformly	at	random	(or	some	other	

“Reasonable”	search	rule).	
3. Update	the	step	according	to	the	rule:	

sxy"	 = 	 z
𝑗			𝑤. 𝑝. 		min{1,

𝑝R
𝑝M
}

𝑠}																						𝑜/𝑤
4. Return	to	(2),	unless	t=T,	in	which	case	stop	and	return	st



Metropolis	Hastings	Algorithm

• Create	Markov	chain
• start	from	any	state
• simulate	MC	many	many	times	(mixing	time)
• return	final	state

By	theorem	it	is	a	sample	from	p!	

Next:	applying	it	to	Bayesian	inference!	



Sampling	in	Bayes	networks	by	MCMC

30 Bayesian Artificial Intelligence, Second Edition
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Sampling	in	Bayes	networks	by	MCMC

Goal:	estimate		𝑃[𝑋" = 𝑎"|𝑋# = 𝑎#, 𝑋T = 𝑎T]

Method:	sample	from			𝑃[𝑋"|𝑋# = 𝑎#, 𝑋T = 𝑎T] and	estimate	the	probability	of	
value	𝑋" = 𝑎".		Assume	binary	values,	𝑎M ∈ {0,1}.	

Graph:		all	possible	assignments	to	all	variables	(2Q nodes!).	

The	MCMC	algorithm:		
1. Start	in	arbitrary	state	 𝑏",𝑏#, … , 𝑏Q ,	such	that	𝑏# = 𝑎#, 𝑏T = 𝑎T
2. Pick	random	variable	𝑋R ≠ 𝑋#, 𝑋T ,		move	to	state	 𝑏", 𝑏#, … , 1 − 𝑏R, … ,𝑏Q with	

probability	

3. Return	to	(2),	unless	reached	limit,	in	which	case	return	current	state

𝑃[𝑏",𝑏#,… ,1 − 𝑏R ,… , 𝑏Q]
𝑃[𝑏",𝑏#,… ,𝑏Q]



Different	search	rule	(in	Metropolis-Hastings)

Goal:	estimate		𝑃[𝑋" = 𝑎"|𝑋# = 𝑎#, 𝑋T = 𝑎T]

Method:	sample	from			𝑃[𝑋"|𝑋# = 𝑎#, 𝑋T = 𝑎T] and	estimate	the	probability	of	value	
𝑋" = 𝑎".		Assume	binary	values,	𝑎M ∈ {0,1}.	

Graph:		all	possible	assignments	to	all	variables	(2Q nodes!).	

The	MCMC	algorithm:		
1. Start	in	arbitrary	state	 𝑏",𝑏#, … , 𝑏Q ,	such	that	𝑏# = 𝑎#, 𝑏T = 𝑎T
2. Pick	two	variable	𝑋R� , 𝑋R� ≠ 𝑋#, 𝑋T ,		move	to	state	 𝑏", … , 1 − 𝑏R� , … , 1 − 𝑏R� , … , 𝑏Q

with	probability	

3. Return	to	(2),	unless	reached	limit,	in	which	case	return	current	state
𝑃[ 𝑏",… , 1 − 𝑏R� ,… ,1 − 𝑏R� , … , 𝑏Q ]

𝑃[𝑏",𝑏#, … , 𝑏Q]



The	MCMC	paradigm	- summary

“to	sample	from	a	distribution	p,	design a	Markov	Chain	whose	
stationary	distribution	is	𝜋 = 𝑝.			Then	simulate	the	Markov	Chain	and	
sample	from	it	after	it	has	mixed	(reached	stationarity).“

1. Metropolis-Hastings	– general	methodology	for	designing	Markov	
chains	for	a	given	distribution

2. Can	be	applied	to	Bayes	networks,	since	only	ratio	of	local	
probabilities	needed	

3. Mixing	time	– the	hard	quantity	to	bound	(usually	poly-graph-size,	
which	is	exponential	in	theory)


