probabilities .g)o
gplanning . — QT .
- grepresentatlon(l = ﬁ,%,-uin{m t COS 402 - MaCh|ne
b > 0 .
Ssup.oegxgz:asewt—g %o§ :é Learning and
- §.: ¢ Hé‘ﬁ‘; o Artificial Intelligence
v
. ff fimtelligence Fall 2016
o, & wsemanties 54T
< -
O'_Q') 8 COS 402: Artificial Intelligence =
y—q and Machine Learning -

Lecture 15: MCMC
Sanjeev Arora Elad Hazan

PRINCETON
UNIVERSITY




Course progress

* Learning from examples

* Definition + fundamental theorem of statistical learning, motivated efficient
algorithms/optimization

e Convexity, greedy optimization—gradient descent
* Neural networks

 Knowledge Representation
* NLP
* Logic
* Bayes nets
e Optimization: MCMC (TODAY)

* Next: reinforcement learning



Goal: inference in Bayes networks

Node name | Type Values
Pollution | Binary | {low, high}

\ Smoker Boolean | {T, F}

Cancer Boolean | {T, F}
Dyspnoea | Boolean | {T, F}
X-ray Binary | {pos, neg}




How to sample from a distribution?
* How to generate a random number?

* Von-Neumann’s coin

. , _ "
given a biased coin — turns up heads w.p. p # ~
how to generate a random bit?




How to sample from a distribution?

* How to generate a random number?

* Von-Neumann’s coin:

* From now on: assume we have access to U[0,1]

e Uniformly at random on an interval?

* Exponential?



Inverse transform method

e Cumulative distribution function




Inverse transform method

Let F:R » [0,1] be the CDF we want to sample from,
let
F~1:[0,1] » R beitsinverse.

Algorithm:sampleY ~ U[0,1] andreturnX = F~1(Y)
Theorem: X ~ F

Exponential distribution: F(x) = 1 — e ™** forx > 0,
so sampley ~ U][0,1], and return —% In(1—-y)




Inverse transform method

Let F:R » [0,1] be the CDF we want to sample from,
let
F~1:[0,1] » R beitsinverse.

Algorithm:sampleY ~ U[0,1] andreturnX = F~1(Y)
Theorem: X ~ F

Exponential distribution: F(x) = 1 — e ™** forx > 0,
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How to sample from a distribution?

* How to generate a random number?

* Von-Neumann’s coin:

* From now on: assume we have access to U[0,1]
e Uniformly at random on an interval?

* Exponential?
e Gaussian/Normal?



Normal random variable (Gaussian)
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why can’t we use inverse transform?




Gaussian sample: Box-Muller algorithm

e |dea — convertto radial basis

Sample two variables r ~ exp (1) ,0 ~ U]0,1] and return the

2
Cartesian coordinates:

X=rcosf,Y =rsind !
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Gaussian sample: Box-Muller algorithm

e |dea — convertto radial basis

Sample two variables r ~ exp (1) ,0 ~ U]0,1] and return the

2
Cartesian coordinates:
X=rcosf,Y =rsinf

* Theorem:X,Y ~ N|[0,1] and are independent

* Proof idea: sampling to i.i.d normal RV, is rotation symmetric, and
radius distributed as exp(1/2).



How to sample from a distribution?

* Sampling from a multi-dimensional distribution?
* Inverse transform -> many times hard to compute

» other methods (importance sampling, etc.) degrade exponentially with the
dimension

* Many times provably computationally hard
e But also very important!



Los Alamos simulations

* Need to simulate complicated multi-particle experiments

* 0-1 assighment,
valid configuration: “no neighboring 1’s”




Sampling in Bayes networks??

@ Node name | Type Values
Pollution | Binary | {low, high}

\ Smoker Boolean | {T, F}

Cancer Boolean | {T, F}
Dyspnoea | Boolean | {T, F}
X-ray Binary | {pos, neg}
PIX;=a;|lX;=aq,...X,, =a,X; =?]="7
=7

PlX, =a.|Xs = as] ="




The MCMC paradigm

“to sample from a distribution p, design a Markov Chain whose
stationary distribution is T = p. Then simulate the Markov Chain and
sample from it after it has mixed (reached stationarity).”




The MCMC paradigm

“to sample from a distribution p, design a Markov Chain whose
stationary distribution is T = p. Then simulate the Markov Chain and
sample from it after it has mixed (reached stationarity).”

1. What is a Markov Chain & stationary dist. ?

2. When does it have a stationary distribution and how to find it /
sample from it efficiently?

3. How to design a Markov Chain for a given distribution?



Markov Chain

Markov chain with three states (s = 3) 0.1 Directed graph

and a transitition
matrix giving, for
eachi,j the
probability of
steppingto j when at .

0 1 0
T=|0 01 09
(06 04 0 |

0.6
Transition matrix Transition graph



Markov Chains — usage and examples

Common example: PageRank (google’s webpages initial ranking system)

Webgraph:
Nodes = webpages , Edges = hyperlinks

( M M
_i (l,_]) ~E

T;; = probability to move from page i to page j={ ¢

d; = degree (outgoinglinks) from page i

PageRank score for page = m(i) = prob. in stationary distribution!



Random Walks in a Markov Chain

Starting from state i, the distribution
after one step is given by

p1 = e, p, = eT

Markov chain with three states (s = 3) 0.1

After n steps:
p, =eT*T % xT =¢T" 1

0 1 0
T=10 01 09 Let:
06 04 0 i
0.6 T = lim eiT"

Transition matrix Transition graph n—oo




Random Walks in a Markov Chain

Let:
Markov chain with three states (s = 3) 0.1 T = llm ei Tn
Nn— 0o
Thus,
nl =m

0 I 0
T=]10 01 09
0.6 04 0

“stationary distribution”

0.6

Transition matrix Transition graph



Random Walks in a Markov Chain

For this MC:
o p1 =e =(1,0,0)
Markov chain with three states (s = 3) 0.1 p, =e, T = (()’1’())
ps = p,T = (0,0.1,0.9)
ps = p3T = (0.54,0.37,0.09)

T = Do, ~ (0.22,0.41,0.37)

0 I 0
T=]10 01 09
0.6 04 0

0.6

Transition matrix Transition graph



Stationary Distribution

Distribution m = (my,...,mT,,) is stationary if m; > 0 Vi,

Zmzl and 7' =7

(Taking one step according to the markov chain leaves this distribution unchanged)

(0.22,0.41,0.37) | 0 0.1 0.9| = (0.22,0.41,0.37)
0.6 04 0O




Non-stationary Markov chains

“periodic”




Non-stationary Markov chains

0.5

“reducible”




Ergodic theorem

Amazingly, every irreducible and a-periodic Markov chain has a unique
stationary distribution, and every random walk starting from any node
convergesto it!

- implication to PageRank...

Mixing time is:

ne s.t. |eThe—m| <e

In general — depends polynomially in #nodes, very hard to bound.
Many times in practice — depends logarithmicallyin #nodes!



Designing a Markov chain: Metropolis-Hastings
Input: distribution we wish to sample from, probability of eveniis given by p;
Output: sample from Markov Chain whose stationary distributionism = p

MH algorithm: for t=1,2,...,T

1. Startinarbitrary statei,andlets; =i

2. Attimet, pick state j from [n] uniformly at random (or some other
“Reasonable” distribution).

3. Update the step according to the rule:
(
J w.p. min{
St+1 = Y
St O/ W

\
4. Returnto (2), unless t=T, in which case stop and returns,



Designing a Markov chain: Metropolis-Hastings

Theorem: Markov Chain below is always stationary with stationary distribution being
T=Dp

MH algorithm: for t=1,2,...,T

1. Startinarbitrary statei,andlets; =i

2. Attimet, pick state j from [n] uniformly at random (or some other
“Reasonable” search rule).

3. Update the step according to the rule:
(
J w.p. min{
St+1 = Y
St O/ W

\
4. Returnto (2), unless t=T, in which case stop and returns,



Metropolis Hastings Algorithm

* Create Markov chain

e start from any state

e simulate MC many many times (mixing time)
* return final state

By theorem it is a sample from p!

Next: applying it to Bayesian inference!



Sampling in Bayes networks by MCMC

Node name | Type Values
Pollution | Binary | {low, high}

\ Smoker Boolean | {T, F}

Cancer Boolean | {T, F}

Dyspnoea | Boolean | {7, F}

X-ray Binary | {pos, neg}
PIX;=a;|lX;=aq,...X,, =a,X; =?]="7

PlX; = a1|X; = a3, X5 = as| =7




Sampling in Bayes networks by MCMC
Goal: estimate P[X; = a.|Xy = ay, Xs = ac]

Method:sample from P|X;|X, = a,,Xs = ag| and estimate the probability of
value X; = a4. Assume binary values, a; € {0,1}.

Graph: all possible assignments to all variables (2™ nodes!).

The MCMC algorithm:

1. Startin arbitrary state (by, by, ..., by), such that b, = a,, bz = a-

2. Pick random variable X; # X, X5, move to state (bl, by, ..., 1 — bj, ...,bn) with
probability

3. Returnto (2), unless reached [imi eturn current state



Different search rule (in Metropolis-Hastings)
Goal: estimate P[X; = a.|Xy = ay, Xs = ac]

Method:sample from P|X;|X, = a,,Xs = ag| and estimate the probability of value
X1 = aq. Assume binaryvalues, a; € {0,1}.

Graph: all possible assignments to all variables (2™ nodes!).

The MCMC algorithm:
1. Startin arbitrary state (by, by, ..., by), such that b, = a,, bz = a-

2. Pick two variable le,ij * X,, X5, move to state (bl, v, 1 — bJ'1' e, 1 — bjz’ e bn)
with probability
P[(by, ... 1= b ,..,1 = b , .., by )]
3. Returnto (2), unless reachedimit, in WRidk-castketurn curfent state



The MCMC paradigm - summary

“to sample from a distribution p, design a Markov Chain whose
stationary distribution is T = p. Then simulate the Markov Chain and
sample from it after it has mixed (reached stationarity).”

1. Metropolis-Hastings — general methodology for designing Markov
chains for a given distribution

2. Can be applied to Bayes networks, since only ratio of local
probabilities needed

3. Mixing time — the hard quantity to bound (usually poly-graph-size,
which is exponential in theory)



