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Review:	Probabilities	(example)

Random	variables:	Sunshine		S	∈ {0,	1};		Rainy	R	∈ {0,	1}.

Review: probability (example)

Random variables: sunshine S 2 {0, 1}, rain R 2 {0, 1}

Joint distribution:

P(S,R) =

s r P(S = s,R = r)

0 0 0.20

0 1 0.08

1 0 0.70

1 1 0.02

Marginal distribution:

P(S) =
s P(S = s)

0 0.28

1 0.72

(aggregate rows)

Conditional distribution:

P(S | R = 1) =

s P(S = s | R = 1)

0 0.8

1 0.2

(select rows, normalize)
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Conditional	Distribution

Review: probability (example)

Random variables: sunshine S 2 {0, 1}, rain R 2 {0, 1}

Joint distribution:

P(S,R) =
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P(S) =
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S=	1
R=0 R	=1

S=0

S=0,	R=0

S=1,	R=1



Review	(contd)Review: probability (general)

Random variables:

X = (X1, . . . , Xn) partitioned into (A,B)

Joint distribution:

P(X) = P(X1, . . . , Xn)

Marginal distribution:

P(A) =
P

b P(A,B = b)

Conditional distribution:

P(A | B = b) = P(A,B=b)
P(B=b)
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Bayesian	Net:	Formal	Definition

Definition

Definition: Bayesian network

Let X = (X1, . . . , Xn) be random variables.

A Bayesian network is a directed acyclic graph (DAG) that spec-

ifies a joint distribution over X as a product of local conditional

distributions, one for each node:

P(X1 = x1, . . . , Xn = xn) =
nY

i=1

p(xi | xParents(i))

[whiteboard: example L,B,E,A,R]
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(Will	assume	variables	are	boolean,	for	simplicity)



Example

Pollution
(P)

Smoking	
(S)

Cancer
(C)

X-ray
(X)

Dyspnoea
(D)

Introducing Bayesian Networks 31

For our example, we will begin with the restricted set of nodes and values shown
in Table 2.1. These choices already limit what can be represented in the network. For
instance, there is no representation of other diseases, such as TB or bronchitis, so the
system will not be able to provide the probability of the patient having them. Another
limitation is a lack of differentiation, for example between a heavy or a light smoker,
and again the model assumes at least some exposure to pollution. Note that all these
nodes have only two values, which keeps the model simple, but in general there is no
limit to the number of discrete values.

2.2.2 Structure
The structure, or topology, of the network should capture qualitative relationships
between variables. In particular, two nodes should be connected directly if one af-
fects or causes the other, with the arc indicating the direction of the effect. So, in our
medical diagnosis example, we might ask what factors affect a patient’s chance of
having cancer? If the answer is “Pollution and smoking,” then we should add arcs
from Pollution and Smoker to Cancer. Similarly, having cancer will affect the pa-
tient’s breathing and the chances of having a positive X-ray result. So we add arcs
from Cancer to Dyspnoea and XRay. The resultant structure is shown in Figure 2.1.
It is important to note that this is just one possible structure for the problem; we look
at alternative network structures in §2.4.3.

P(X=pos|C)

S P(C=T|P,S)
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FIGURE 2.1: A BN for the lung cancer problem.

Structure terminology and layout

In talking about network structure it is useful to employ a family metaphor: a node
is a parent of a child, if there is an arc from the former to the latter. Extending the
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Pr[X,	D,	C,	P,	S]

=	Pr[X|C]	Pr[D|C]		Pr[C|P,	S]	Pr[S]	Pr[C]	

Note:	Distribution	on	
5	boolean variables;	specified	
using	only	10	numbers		

(instead	of	the	trivial	
25 -1	=	31	numbers.)



Special properties

Key idea: locally normalized

All factors (local conditional distributions) satisfy:X

xi

p(x
i

| xParents(i)) = 1 for each xParents(i)

Implications:

• Consistency of sub-Bayesian networks

• Consistency of conditional distributions

CS221 / Autumn 2015 / Liang 23



I	hinted	but	did	not	prove	formally…

Bayes	nets	define	proper	distributions,	in	the	sense	that	
all	marginal	distributions	are	well-defined	(meaning	probabilities	sum	to	1)
and	behave	as	intuition	suggests.

Consistency of local conditionals

Key idea: local conditional distributions

Local conditional distributions (factors) are the true conditional

distributions.

A B C

D E

F G H

P(D = d | A = a,B = b)| {z }
from probabilistic inference

= p(d | a, b)| {z }
local factor
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e.g,

From	marginalization
calculation From	CPD	table



Applica2ons)
•  Speech%recogni$on%
•  Diagnosis%of%diseases%
•  Study%Human%genome%
•  Robot%mapping%
•  Modeling%fMRI%data%
•  Fault%diagnosis%
•  Modeling%sensor%network%data%
•  Modeling%protein@protein%interac$ons%
•  Weather%predic$on%
•  Computer%vision%
•  Sta$s$cal%physics%
•  Many,%many%more%…%

Applications



Today:	Doing	calculations/predictions	with	bayesian nets.



Types	of	interesting	calculations

Review: probability (general)

Random variables:

X = (X1, . . . , Xn) partitioned into (A,B)

Joint distribution:

P(X) = P(X1, . . . , Xn)

Marginal distribution:

P(A) =
P

b P(A,B = b)

Conditional distribution:

P(A | B = b) = P(A,B=b)
P(B=b)

CS221 / Autumn 2015 / Liang 13

=
P (A,B = b)P

a P (A = a,B = b)

For	both	tasks,	we	need	to	marginalize	out	some	variables.	



Example:

Alarm: problem

Problem: alarm

You have an alarm that goes o↵ if there’s a burglary or an earth-

quake. You hear the alarm go o↵. What happened?
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Alarm: model

P (B = b, E = e,A = a) = p(b)p(e)p(a | b, e)

B E

A

b p(b)

1 ✏

0 1� ✏

e p(e)

1 ✏

0 1� ✏

b e a p(a | b, e)
0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

p(b) = ✏ · [b = 1] + (1� ✏) · [b = 0]

p(e) = ✏ · [e = 1] + (1� ✏) · [e = 0]

p(a | b, e) = [a = (b _ e)]
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Alarm: model

P (B = b, E = e,A = a) = p(b)p(e)p(a | b, e)

B E

A

b p(b)

1 ✏

0 1� ✏

e p(e)

1 ✏

0 1� ✏

b e a p(a | b, e)
0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

p(b) = ✏ · [b = 1] + (1� ✏) · [b = 0]

p(e) = ✏ · [e = 1] + (1� ✏) · [e = 0]

p(a | b, e) = [a = (b _ e)]
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A	=	B	⋁ E



Example: inference

Joint distribution:

b e a P(B = b, E = e,A = a)

0 0 0 (1� ✏)2

0 0 1 0

0 1 0 0

0 1 1 (1� ✏)✏

1 0 0 0

1 0 1 ✏(1� ✏)

1 1 0 0

1 1 1 ✏2

Queries: P(B)? P(B | A = 1)? P(B | A = 1, E = 1)?

[demo: ✏ = 0.05]
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A	=	B	⋁ E

Example: inference

Joint distribution:

b e a P(B = b, E = e,A = a)
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Example: inference
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Marginal	distribution	

Example: inference

Joint distribution:

b e a P(B = b, E = e,A = a)

0 0 0 (1� ✏)2

0 0 1 0

0 1 0 0

0 1 1 (1� ✏)✏

1 0 0 0

1 0 1 ✏(1� ✏)

1 1 0 0

1 1 1 ✏2

Queries: P(B)? P(B | A = 1)? P(B | A = 1, E = 1)?

[demo: ✏ = 0.05]
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P (B = 1|A = 1) =
✏

2✏� ✏2

P (B = 0|A = 1) =
✏� ✏2

2✏� ✏2

P (B = 1|A = 1, E = 1) =
✏2

✏
= ✏

(“Explaining	away”!)



Computing	P(A=a)	where	A	consists	of	n-k	variables	
requires	sum	over	2k terms.	Faster	way?	

First	algorithm	today:		Bayes	net	is	a	polytree

(	=	directed	graph	which	is	a	acyclic	when	we	make
the	edges	undirected)

If	graph	has	degree	O(1),	then	an	O(n)	time	algorithm	to	compute	𝕡(A=a)		where	A	is	
some	subsequence	of	Xi’s.			(Big	win	If	n	is	much	less	than	2k.)

X1 X2

X4



Computing	Marginals in	polytrees.
Will	show	how	to	compute	𝕡(A=a).



X1

X2 X3

Intuition:		Suppose	polytree looks	like	this

Xleft Xright

Defines	distribution	of	the	form				
P(X1 X2 X3	,….,Xn)	=	p(X1)	F1(Xleft)	F2(Xright)
Where	F1,	F2		 describe	prob.	distributions	for	the	
Left	and	Right	subtrees.

We’re	computing		𝕡(A=a).

Let	A1 =subset	of	A	in	left	subtree	and	
A2=	subset	of	A	in	right	subtree	

(a1,	a2 are	their	values	in	a)
Main	observation:	Left	subtree
only	affected	by	X1 via	X2		
(and	Right	subtree	only	affected	
by	X1 via	X3)

𝕡(A=a)	=		p(X1 =0)	𝕡1(A1 =	a1| X1 =0) 𝕡2(A2 =	a2| X1 =0)		
+		p(X1 =1)	𝕡1(A1 =	a1|	X1 =1) 𝕡2(A2 =	a2|X1 =0)



X1

X2 X3

Xleft Xright

We’re	computing		𝕡(A=a).

Suppose	A1 is	subset	of	A	in	left	subtree	and	A2
in	right	subtree.	(a1,	a2 are	their	values	in	a)

𝕡(A=a)	=		p(X1 =0)	𝕡1(A1 =	a1| X1 =0) 𝕡2(A2 =	a2| X1 =0)		
+		p(X1 =1)	𝕡1(A1 =	a1|	X1 =1) 𝕡2(A1 =	a1|X1 =0)

Inductive	Algorithm:	Left	subtree	computes	
𝕡1(A1 =	a1,	X2 =c)	for	c	=	0,1.
Right	Subtree	computes			𝕡1(A1 =	a1,	X3 =d)		
for	d	=	0,1

Putting	it	together:
𝕡(A=a)	=		∑b,	c,	d in	{0,1}	p(X1 =b)	p(X2 =c|X1 =b) p(X3 =d|X1 =b)	𝕡1(A1 =	a1,	X2 =c) 𝕡2(A2 =	a2,	X3 =d)		

(**	For	simplicity	am	assuming	



What	about		doing	inference/marginals in	bayesian nets	that	are	not	
polytrees?		

Polytree algorithm	can	be	extended,	but	running	time	goes	way	up.
(and	computing	marginals for	completely	general	bayes nets	is	NP-hard).	

Next:	A	randomized algorithm	(Metropolis-Hastings)	to	approximate marginals
(Works	well	in	practice;	though	some	bad	cases	are	known)



Recap:	Bayes	nets	as	models	of	probabilistic	processes

A1 A2 A3 Ak

B

C

Step	1:	Coins	tossed	at	each	Ai node	to	
decide	if	Ai happened.	
(Pr[Heads]	=	Pr[Ai =1])

Step	2:	Coins	tossed	at	B	node	to	decide
if	B	=1.		(Pr[Heads]	looked	up	from	CPD	

table)

Step	3:	Coins	tossed	at	C	node	to	decide	if
C	=1.	

Moral	for	today:	Using	some	random	bits	we	can	efficiently	generate	a	random	sample	
from	the	distribution	defined	by		the	Bayes	net.			



Randomized	approximation algorithm	(warmup)

Suppose	bayes net	(not	a	polytree)	defines	a	distribution	p(X1,	X2,..	Xn).	
How	to	approximate	marginal	𝕡(X7 =1)?

Generate	random	samples	(b1,	b2,	…,	bn)	from	bayes	net.	
Keep	track	of	fraction	of	times	b7 =	1.
(Law	of	large	numbers	implies	this	fraction	converges	to	𝕡(X7 =1)	
quite	fast.)	

What	goes	wrong	if	we	try	to	compute	complicated	marginals
𝕡(X7=1|A=	a)	(where	A	has	say	n/2	variables)?	

Answer:	If	we	just	produce	random	samples,	the	event	A=a	may	be	very
very	unlikely	and	may	not	show	up	for	a	long	time.	We	need	a	different	way	to	sample.



Metropolis	Hastings	Sampling	Algorithm

4

! A recent survey places the Metropolis algorithm among the 

10 algorithms that have had the greatest influence on the 
development and practice of science and engineering in the 20th

century (Beichl&Sullivan, 2000). 

! The Metropolis algorithm is an instance of a large class of sampling 
algorithms, known as Markov chain Monte Carlo (MCMC).

The importance of MCMC

Bread	and	butter	of	statistical	calculations!
It	will	let	us	sample	from	the	sub-distribution	P(A=a)



Random	walk

2-D	random	walk	
https://upload.wikimedia.org/wikipedia/commons/a/a9/2D_Random_Walk_400x400.ogv

Drunk	man	leaves	a	bar	in	Manhattan.	Whenever	arrives	at	any		street	corner,	
goes	N	or		S	or		E		or		W	with	probability	¼.	How	long	before	he	gets	to	his	apartment?

(Answer:	Walks	O(n4)	blocks	if	apartment	is	n	blocks	away.	Talk	to	me	if	you	want	to	
know	how	to	do	such	calculations.)	



Markov	Chain		(drunkard’s	walk	on	weighted	directed	graph)

26

Markov chain with three states (s = 3)

Markov Chains Example

Transition graphTransition matrix

Directed	graph,
and	a	transitition
matrix	giving,	for	
each	i,	j				the	
probability	of	
stepping	to	j	when	at	i.

At	step	n,	his	whereabouts
are	given	by	some	vector

pi =	Prob he	is	at	node	i.



Markov	Chain		(drunkard’s	walk	on	weighted	directed	graph)

26

Markov chain with three states (s = 3)

Markov Chains Example

Transition graphTransition matrix

Transition	matrix	T	giving,	for	
each	i,	j				the	probability	of		
stepping	to	j	when	at	i.

Suppose,	at	step	n	
pi =	prob.		he	is	at	node	xi

“Distribution	at	step	n	+1”	is	pT
(Note:		row	vector	times	matrix	is	a	

row	vector)

Fact:	Evolution	of	probability	
distribution	given	by	=	Vector	x	Matrix.

Then	prob.	he	is	at	xk at	step	n+1	
=
X

i

piTik



Stationary	Distribution

27

Definition:

[stationary distribution, invariant distribution, steady state distributions]

Markov Chains, 
stationary distribution 

The stationary distribution might be not unique (e.g. T= identity matrix)

Under	some	reasonable	
conditions	(ergodicity)	
this	distribution	is	unique,
and	reached in	finite	time
from	any	starting	position.

Distribution ⇡ = (⇡1, . . . ,⇡m) is stationary if ⇡i � 0 8i,
X

i

⇡i = 1 and ⇡T = ⇡

(Taking	one	step	according	to	the	markov chain	leaves	this	distribution	unchanged)



Stationary	Distribution
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Definition:

[stationary distribution, invariant distribution, steady state distributions]

Markov Chains, 
stationary distribution 

The stationary distribution might be not unique (e.g. T= identity matrix)

Under	some	reasonable	
conditions	(ergodicity)	
this	distribution	is	unique,
and	reached in	finite	time
from	any	starting	position.

Distribution ⇡ = (⇡1, . . . ,⇡m) is stationary if ⇡i � 0 8i,
X

i

⇡i = 1 and ⇡T = ⇡

(Taking	one	step	according	to	the	markov chain	leaves	this	distribution	unchanged)

Alternative	take:	Drunkard’s	walk	
run	for	this	#	of	steps	is	a	way	to	
draw	a	sample	according	to	this	
stationary	distribution.	
Important:	#	of	nodes	m	can	be	
large;	drunkard	moves	node	to	
node	in	this	large	graph.



Where	we	are	headed.

Suppose	probability	distribution	is	p(X1,	X2,..	Xn);	we	desire	𝕡(X7=1|A=	a)	

We	will	do	a	random	walk	on	a	Markov	chain	where	vertices	are	all	
bit	strings	(X1,	X2,..	Xn)		in	which	A=a.	
(Graph		has	size	2n-k		 where	k	is	the	size	of	A.	Too	large	to	write	down;	
but	drunkard’s	walk	only	needs	to	know	the	local	edges	out	of	each	
node	it	reaches.)	

Markov	chain	constructed	such	that	stationary	distribution	is	the	distribution	
conditional	on	A=	a.
è Drunkard’s	walk	gives	us	a	sample.	Repeat	a	few	times	and	estimate	𝕡(X7=1|A=	a)	



Metropolis	Hastings	Algorithm

39

The Hastings-Metropolis Algorithm

Our goal:

The main idea is to construct a time-reversible Markov chain 
with (π,…,πm) limit distributions

We don’t know B ! 

Generate samples from the following discrete distribution:

Later we will discuss what to do when the distribution is continuous

(This		kind	of	quantity	is	of	interest
in	computing	marginals!)
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with (π,…,πm) limit distributions

We don’t know B ! 

Generate samples from the following discrete distribution:

Later we will discuss what to do when the distribution is continuous
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The Hastings-Metropolis Algorithm

Our goal:

The main idea is to construct a time-reversible Markov chain 
with (π,…,πm) limit distributions

We don’t know B ! 

Generate samples from the following discrete distribution:

Later we will discuss what to do when the distribution is continuous

j=1,	2,	..	,	m		(m	is	big)

Goal

In	our	heads,	create	a	graph	with	m	nodes.	(remember,	m	is	big)	

For	all	nodes	i,		Pii =	0.5.		(i.e.,	stay	in	place	with	prob.	½)	

For	i ≠j,		where	i has	an	edge	to	j:			Pij =
".$

%&'(&&(*)
min{1,	

,-
,*
}

Claim:	The	desired	distribution	is	the	unique	stationary	distribution	for	this	markov
chain	if		all		bj’s are	nonzero.				è Drunkard	walk	gives	us	samples	from	this	distrib.



Using	Metropolis-Hastings	for	computing	marginals

Suppose	probability	distribution	is	p(X1,	X2,..	Xn);	we	desire	𝕡(X7=1|A=	a)	

We	run	Metropolis-Hastings	to	generate	samples	from	the	distribution	where
A	=a.		(Graph	is	too	big	to	write	down,	but	can	do	drunkard	walk	in	it)

Graph	in	our	head:		Nodes	are	all	possible	samples	where	A=a;	
Edges	correspond	to	pairs	of	samples	that	differ	in	exactly	1	bit.	
bi =	Probability	of	the	sample	represented	by	node	i.		

For	i ≠j,		where	i has	an	edge	to	j:			Pij =
".$

%&'(&&(*)
min{1,	

,-
,*
} (This	is	ratio	of	probabilities!)



Using	Metropolis-Hastings	for	computing	marginals

Suppose	probability	distribution	is	p(X1,	X2,..	Xn);	we	desire	𝕡(X7=1|A=	a)	

We	run	Metropolis-Hastings	to	generate	samples	from	the	distribution	where
A	=a.		(Graph	is	too	big	to	write	down,	but	can	do	drunkard	walk	in	it)

Graph	in	our	head:		Nodes	are	all	possible	samples	where	A=a;	
Edges	correspond	to	pairs	of	samples	that	differ	in	exactly	1	bit.	
bi =	Probability	of	the	sample	represented	by	node	i.		

For	i ≠j,		where	i has	an	edge	to	j:			Pij =
".$

%&'(&&(*)
min{1,	

,-
,*
} (This	is	ratio	of	probabilities!)

Easy	to	check:	There	is	a	simple	algorithm	that	given	two	samples	that	differ	by	
1	bit,	computes	the	ratio	of	their	probabilities.	


