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Review: Probabilities (example)

Random variables: Sunshine S & {0, 1}; Rainy R € {0, 1}.

Joint Distribution | 5 ;- p(s = 5, R = 1)
00 0.20
P(S,R) =0 1 0.08
10 0.70
11 0.02
Marginal Distribution Conditional Distribution

sP(S=s|R=1)
P(S|R=1)=|0 0.8
1 0.2

s P(S = s)
P(S)=|0 0.28
1 0.72




Review (contd)

Random variables:
X = (X1,...,X,) partitioned into (A, B)
Joint distribution:
P(X)=P(Xy,...,X,)
Marginal distribution:
P(A) =Y, P(A, B =1)
Conditional distribution:

A,B=
P(A| B =1b) = 250



Bayesian Net: Formal Definition
@ @ @

_’é Definition: Bayesian network

Let X = (X4,...,X,) be random variables.

A Bayesian network is a directed acyclic graph (DAG) that spec-
ifies a joint distribution over X as a product of local conditional
distributions, one for each node:

n

P(Xl =T1,...,X, = CEn) — Hp<xz ’ xParents(i))
1=1

(Will assume variables are boolean, for simplicity)



Example

P(P=L)

0.90 Pollution

(P
N

P(X=posIC) / \
0.90

Smoking

P(S=T)

. 0.30

(S)

P(C=TIP,S)

Pr[X, D, C, P, S]

= Pr[X|C] Pr[D|C] Pr[C|P, S] Pr[S] Pr[C]

o0 - T
s L B o B I I 7!

0.05
0.02
0.03
0.001

0.20 / X-ray Dyspnoea
(X) (D)

C

P(D=TIC)

T
F

0.65
0.30

Note: Distribution on
5 boolean variables; specified
using only 10 numbers

(instead of the trivial
2° -1 =31 numbers.)




—“Q' Key idea: locally normalized

All factors (local conditional distributions) satisfy:

Zp(xi | xParents(i)) = 1 for each LParents(1)

Ly

Implications:
e Consistency of sub-Bayesian networks

e Consistency of conditional distributions



| hinted but did not prove formally...

Bayes nets define proper distributions, in the sense that
all marginal distributions are well-defined (meaning probabilities sum to 1)

and behave as intuition suggests.

DNNONNG
@@@/@l@

P(D=d|A=a,B=10)=p(d]a,b)

\ . 4 4
-~

e.g

From marginalization local factor

calculation From CPD table



Applications

Speech recognition Py
Peech recogn % &
Diagnosis of diseases e ®
Study Human genome - AX . el
Robot mapping T 90:0 009 00

. UK N Rop!
Modeling fMRI data — % Ty g
Fault diagnosis 5 |
Modeling sensor network data il — 3 ';
Modeling protein-protein interact ™ v ©-
Weather prediction

S S o it . Erk1/2
Computer vision /‘
Statlstlcal thSlCS Regulation of MAP Kinases ,f,;;;;te

Many, many more ...



Today: Doing calculations/predictions with bayesian nets.



Types of interesting calculations

Marginal distribution:

P(A) = Y, P(A, B = b) 4

Conditional distribution:
_ P(A,B=b) P(A, B =)

P(A|B=0) = Jp=p S P(A=a,B

For both tasks, we need to marginalize out some variables.



Example:

OL
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B
gl B

You have an alarm that goes off if there's a burglary or an earth-
quake. You hear the alarm go off. What happened?

P(B=b,E

/@ b p(b)
O

e, A=

a)

e ple)
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A=BVE
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@ bb) | e ple)
4 oiel loi

Marginal distribution P(B)?
P(B|A=1)7 PEB=14=1=5"3

6—62

P(B=0/A=1) =

2¢ — €2
P(B|A=1,E = 1)? 2
P@:MA:LE:mz%ze

(“Explaining away”!)

= p(b)p(e)p(a | b, e)

A=BVE

b e a PB=bE=e¢A=a)
0 0 0 (1—¢?

0O 0 1 O

0O 1 0 O

0 1 1 (1—e)e

1 0 0 O

I 0 1 €l1—¢

1 1 0 0

1 1 1 &




Computing P(A=a) where A consists of n-k variables
requires sum over 2 terms. Faster way? o o

First algorithm today: Bayes net is a polytree

( = directed graph which is a acyclic when we make . Xa .

the edges undirected) é

If graph has degree O(1), then an O(n) time algorithm to compute p(A=a) where A is
some subsequence of Xs. (Big win If n is much less than 2k,



Computing Marginals in polytrees.
Will show how to compute p(A=a).



@ Intuition: Suppose polytree looks like this

/ Defines distribution of the form
P(Xl X2 X3 r""rxn) = p(xl) I:1()(Ieft) FZ(Xright)
Where F,, F, describe prob. distributions for the
Left and Right subtrees.

We're computing p(A=a).
Xleft Xright .
Let A; =subset of A in left subtree and
A,= subset of A in right subtree
(a1, @, are their values in a)

Main observation: Left subtree
only affected by X; via X,
(and Right subtree only affected

by X; via X3)

P(A=a) = p(X; =0) p1(A; = a;| X; =0) p,(A, =a,]| X;=0)
+ p(Xy =1) P1(A; = a;| X; =1) p,(A; = a,[X; =0)



@ We're computing p(A=a).

/ Suppose A, is subset of A in left subtree and A,
in right subtree. (a,, a, are their values in a)
\ (Ya) = p(X;=0) p1(A; = a;| X; =0) p,(A, =a,| X; =0)
+ p(Xy =1) p1(A; = a;| X; =1) p,(A; = a;|X, =0)
Xleft Xright . .
Inductive Algorithm: Left subtree computes
P1(A; =24, X, =c) for c=0,1.

Right Subtree computes p;(A; =a4, X5 =d)
ford=0,1

Putting it together:
P(A=a) = 3y ¢ 4 info,13 P(X1 =b) p(X; =c|X; =b) p(X5 =d|X; =b) Pp1(A; = a5, X; =c) P,(A; = a5, X3 =d)

(** For simplicity am assuming



/\4
What about doing inference/marginals in bayesian nets that are not @Tﬁ
\

polytrees?
N,

Polytree algorithm can be extended, but running time goes way up.
(and computing marginals for completely general bayes nets is NP-hard).

Next: A randomized algorithm (Metropolis-Hastings) to approximate marginals
(Works well in practice; though some bad cases are known)



Recap: Bayes nets as models of probabilistic processes

Step 1: Coins tossed at each A node to
” 0 decide if A, happened.
\ (Pr[Heads] = Pr[A. =1])
Step 2: Coins tossed at B node to decide
° if B=1. (Pr[Heads] looked up from CPD
table)
@ Step 3: Coins tossed at C node to decide if

C=1.

Moral for today: Using some random bits we can efficiently generate a random sample
from the distribution defined by the Bayes net.



Randomized approximation algorithm (warmup)

Suppose bayes net (not a polytree) defines a distribution p(X;, X,,.. X,,).
How to approximate marginal p(X; =1)?

/Generate random samples (b4, b,, ..., b,) from bayes net. h
Keep track of fraction of times b, = 1.
(Law of large numbers implies this fraction converges to p(X; =1)
\quite fast.) Y

What goes wrong if we try to compute complicated marginals
P(X;=1|A=a) (where A has say n/2 variables)?

Answer: If we just produce random samples, the event A=a may be very
very unlikely and may not show up for a long time. We need a different way to sample.



Metropolis Hastings Sampling Algorithm

Q A recent survey places the Metropolis algorithm among the

10 algorithms that have had the greatest influence on the
development and practice of science and engineering in the 20t
century (Beichl&Sullivan, 2000).

O The Metropolis algorithm is an instance of a large class of sampling
algorithms, known as Markov chain Monte Carlo (MCMCQ).

Bread and butter of statistical calculations!
It will let us sample from the sub-distribution P(A=a)



Random walk

Drunk man leaves a bar in Manhattan. Whenever arrives at any street corner,
goes N or Sor E or W with probability Y. How long before he gets to his apartment?

(Answer: Walks O(n?) blocks if apartment is n blocks away. Talk to me if you want to
know how to do such calculations.)

2-D random walk
https://upload.wikimedia.org/wikipedia/commons/a/a9/2D_Random_Walk_400x400.0gv



Markov Chain (drunkard’s walk on weighted directed graph)

Markov chain with three states (s = 3) 0.1 Directed graph

and a transitition
matrix giving, for
eachi,j the
probability of
stepping to j when at i.

0 l 0
T=|0 01 09
06 04 0 At step n, his whereabouts
- B 0.6 are given by some vector
Transition matrix Transition graph

p; = Prob he is at node .



Markov Chain (drunkard’s walk on weighted directed graph)

Markov chain with three states (s = 3) 0.1 Transition matrix T giving, for
eachi,j the probability of
stepping to j when at i.

Fact: Evolution of probability
distribution given by = Vector x Matrix.

0 I 0
T=1]0 01 09
0.6 04 0

Suppose, at step n
p; = prob. heis at node x;

0.6

Transition matrix Transition graph

2

. L - Then prob. he is at x, at step n+1
“Distribution at step n +1” is pT S p.T. k P
(Note: row vector times matrix is a T L Pitik

row vector) ‘



Stationary Distribution

Distribution m = (my,...,m,,) is stationary if m; > 0 Vi,

Zmzl and 7' =7

(Taking one step according to the markov chain leaves this distribution unchanged)

o 1 o0 Under some reasonable
(0.22,0.41,0.37) [ 0 0.1 0.9] = (0.22,0.41,0.37)  conditions (ergodicity)

0.6 0.4 O this distribution is unique,

and reached in finite time

from any starting position.



Alternative take: Drunkard’s walk\

Stationa ry Distribution run for this # of steps is a way to
draw a sample according to this
Distribution 7 = (71, ..., 7, ) is station stationary distribution.
Important: # of nodes m can be
Z m =1 and 71l =7 large; drunkard moves node to
p ode in this large graph.

(Taking one step according to the markov chain leaves this distribution uncha

O 1 0 Under some reasonab

(0.22,0.41,0.37) | 0 0.1 0.9 = (0.22,0.41,0.37)  conditions (ergodicity)
0.6 0.4 O this distribution is uniqu

and reached in finite time
from any starting position.



Where we are headed.

Suppose probability distribution is p(Xy, X,,.. X,,); we desire p(X,=1|A=a)

We will do a random walk on a Markov chain where vertices are all
bit strings (X, X,,.. X,,)) in which A=a.

(Graph has size 2"% where k is the size of A. Too large to write down;
but drunkard’s walk only needs to know the local edges out of each
node it reaches.)

Markov chain constructed such that stationary distribution is the distribution
conditional on A= a.

=» Drunkard’s walk gives us a sample. Repeat a few times and estimate p(X,=1|A=a)



Metropolis Hastings Algorithm

Let by,....bm >0, and B = g": b, .(ThIS klnd.ofquant-lty is of interest
j=1 in computing marginals!)
Assume that m is so big, that it is difficult to calculate B.

Our goal:

Generate samples from the following discrete distribution:

. b
P(X=j)=m= 5  Wedon't know 5!

The main idea is to construct a time-reversible Markov chain
with (7 ,..., 7, ) limit distributions



Goal
Generate samples from the following discrete distribution:

b: i=1,2,.., m (mis big)

P(X=j)=mn= Ef We don't know B!

In our heads, create a graph with m nodes. (remember, m is big)

For all nodes i, P; =0.5. (i.e., stay in place with prob. %)

b.
Fori#j, whereihasanedgetoj: Py =#:e(i) min{1, ZL}

Claim: The desired distribution is the unique stationary distribution for this markov
chain if all bj’s are nonzero. =>» Drunkard walk gives us samples from this distrib.



Using Metropolis-Hastings for computing marginals

Suppose probability distribution is p(X;, X,,.. X,,); we desire p(X;=1|A= a)

Graph in our head: Nodes are all possible samples where A=3;

Edges correspond to pairs of samples that differ in exactly 1 bit.
b, = Probability of the sample represented by node i. =

e
—
~

We run Metropolis-Hastings to generate samples from the distribution where
A =a. (Graph is too big to write down, but can do drunkard walk in it)

. . . 0.5 . b,
Fori#j, whereihasanedgetoj: P; = Tegree(d min{1, 3{} (This is ratio of probabilities!)



Using Metropolis-Hastings for computing marginals

Suppose probability distribution is p(X;, X,,.. X,,); we desire p(X;=1|A= a)

Graph in our head: Nodes are all possible samples where A=3;

Edges correspond to pairs of samples that differ in exactly 1 bit.
b, = Probability of the sample represented by node i. =

R
—~
~

We run Metropolis-Hastings to generate samples from the distribution where
A =a. (Graph is too big to write down, but can do drunkard walk in it)

. . . 0.5 . b,
Fori#j, whereihasanedgetoj: P; = Tegree(d min{1, 3{} (This is ratio of probabilities!)

Easy to check: There is a simple algorithm that given two samples that differ by
1 bit, computes the ratio of their probabilities.



