

COS 402 – Machine Learning and Artificial Intelligence Fall 2016

Lecture 12: Knowledge Representation and Reasoning Part 1: Logic

Sanjeev Arora

Elad Hazan

(Borrows from slides of Percy Liang, Stanford U.)

Thus far in the course

- Formalization of learning from data (statistical learning theory)
- Language models and language semantics. (examples of unsupervised learning)
- Recommender systems.

Today: Knowledge representation and reasoning using logic

Reminder: In-class midterm this Thurs. 75 min; closed book (arrive on time!) (Study guide posted on piazza.)

LOGIC

log∙ic /ˈläjik/ ♠

noun noun: **logic**

- reasoning conducted or assessed according to strict principles of validity. "experience is a better guide to this than deductive logic" synonyms: reasoning, line of reasoning, rationale, argument, argumentation "the logic of their argument"
 - a particular system or codification of the principles of proof and inference.
 "Aristotelian logic"

Also basis of digital circuits in computer chips EE206/COS306

Role of logic in Al

- For 2000 years, people tried to codify "human reasoning" and came up with logic.
- Most AI work until 1980s: Build machines that represent knowledge and do reasoning via logic. "Rule based reasoning."
- "Learning from data" is popular today, but lacks aspects that were trivial in the pre-1980s systems (e.g. allow human programmer to easily communicate his/her knowledge to the system). "How do you teach a deep net to multiply two numbers?"
- Logical reasoning now seems poised for a comeback.

Goals of logic

• **Represent** knowledge about the world.

• Reason with that knowledge.

Natural language?

- A **dime** is better than a **nickel**.
- A **nickel** is better than a **penny.**
- Therefore, a **dime** is better than a **penny.**
- A **penny** is better than a **nothing.**
- Nothing is better than world peace.
 - Therefore, a **penny** is better than **world peace**.

Natural language is tricky!

Use of logic removes ambiguity (similar to computer languages); but also makes system less flexible. (Will study more flexible versions later.)

•

Knowledge

Components of any logical system

• Syntax	Different syntax, same semantics
 Semantics. 	2 + 3 ⇔ 3 + 2
 Reasoning 	Same syntax, different semantics
	3/2 in Python 2.7 vs 3/2 in Python 3.

Propositional Logic (aka Boolean Logic; remember COS 126!)

Syntax:

Propositional symbols (atomic formulas): A, B, C

Logical connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$

Build up formulas recursively—if f and g are formulas, so are the following:

- Negation: $\neg f$
- Conjunction: $f \wedge g$
- Disjunction: $f \lor g$

$$(A \lor \neg B) \land (\neg A \lor B)$$

- Implication: $f \rightarrow g$
- Biconditional: $f \leftrightarrow g$

 \lor and \land and \leftrightarrow are symmetric, like "+" and "times" in arithmetic.

Syntax provides symbols.

No "meaning" yet (semantics)!

Semantics provided by a "Model" (unrelated to "model" used in machine learning!)

For propositional logic, a model is simply an assignment to all variables. (each variable assigned 0 (false) or 1 (true), not both) Sanity check: What is # of possible models if there are 3 variables? How about n variables?

Interpretation function

I(f, w): Given formula f and model w, assigns exactly one of 1 (True) or 0 (False) to f.

Build up formulas recursively—if f and g are formulas, so are the following:

- Negation: $\neg f$
- Conjunction: $f \wedge g$
- Disjunction: $f \lor g$
- Implication: $f \to g$
- Biconditional: $f \leftrightarrow g$

- True iff f is false
- True iff both f and g are true
- True iff at least one of f, g is true
- False iff f is true and g is false.
- True iff f and g have the same value (true or false)

Definition: M(f) = Set of models w for which I(f, w) = True

Formula f compactly represents M(f) ("Set of possible worlds where f is true.")

• Example: For f= $A \land B$

 $M(f) = \{ A = 1, B = 1 \}.$

• For $f = A \leftrightarrow B$

M(f) = {A=1, B=1}; {A =0; B =0}

Tautology: Formula f such that M(f) = All possible models. ("True in all possible worlds")

Example: $A \lor \neg A$. (True whether A = 0 or A = 1!)

Contradiction: Formula f such that M(f) = Empty set. ("False in all possible worlds.")

Example: $A \land \neg A$. (False whether A =0 or A=1!)

Knowledge representation via logic

Knowledge base : Set of formulae { $f_1, f_2, ..., f_n$ } M(KB) = All possible models for $f_1 \land f_2 \land ... \land f_n$ Formulae = "known facts" Models = all possible "worlds" where all these facts hold (Adding more facts to KB can only shrink set of possible worlds.)

Example: Variables: R, S, C ("Rainy", "Sunny," "Cloudy")

KB: $R \lor S \lor C$; $R \rightarrow C \land \neg S$; $C \leftrightarrow \neg S$ ("It is either Rainy or Sunny or Cloudy.")("If it is Rainy then it is Cloudy and not Sunny.")("If it is Cloudy then it is not Sunny, and vice versa")

Models for KB: {R=1, S =0, C =1}; {R =0, C=1, S=0}; {R=0, C=0, S=1}.

Satisfiability

Defn: Knowledge-base KB is satisfiable if M(KB) ≠ ∅ (i.e. there is some assignment to variables that makes all formulae in KB evaluate to True)

Defn: KB contradicts formula f if KB \cup {f} is not satisfiable

Defn: KB entails formula f (denoted KB \models f) if M(KB \cup {f}) = M(KB). (in every world where KB is true, f is also true)

Sanity check: KB entails f iff it contradicts -f.

Defn: KB is consistent with formula f if $M(KB \cup \{f\})$ is non-empty (there is a world in which KB is true and f is also true)

An example

Example: Variables: R, S, C ("Rainy", "Sunny," "Cloudy")

 $\begin{array}{lll} \mathsf{KB:} & \mathsf{R} \lor \mathsf{S} \lor \mathsf{C}; \\ & \mathsf{R} \nrightarrow \mathsf{C} \land \neg & \mathsf{S}; \\ & \mathsf{C} \longleftrightarrow \neg & \mathsf{S} \end{array}$

Does $KB \models S \lor C$?

Models for KB: {R=1, S =0, C =1}; {R =0, C=1, S=0}; {R=0, C=0, S=1}.

 $S \lor C$ is true in all these models \checkmark

An example

Example: Variables: R, S, C ("Rainy", "Sunny," "Cloudy")

 $\begin{array}{lll} \text{KB:} & \mathsf{R} \lor \mathsf{S} \lor \mathsf{C}; \\ & \mathsf{R} \nrightarrow \mathsf{C} \land \neg & \mathsf{S}; \\ & \mathsf{C} \longleftrightarrow \neg & \mathsf{S} \end{array}$

Examples: $R \rightarrow U$; $S \rightarrow \neg U$;

Add a variable: U ("Carry an umbrella"). What common-sense "facts" can we add about U to the above KB?

Al systems till 1980s used such reasoning; "facts" were added by programmers based upon introspection.

Decision-making at run-time = which formulae are entailed/contradicted/consistent Recap of logic so far

- Defn of formulae.
- KB = List of formulae. ("Facts about the world")
- KB can entail or contradict another formula, or be consistent with it.
- To decide which of the three possibilities of prev. line holds, draw up list of all possible models. ("Truth table method.")

Truth table method (to check if KB has any model)

- If n variables, can take 2ⁿ time. (infeasible for even n =100) Any faster algorithm?
- Polynomial time algorithm \rightarrow P = NP (Famous open problem)
- In practice there are reasonable algorithms that use resolution and other related reasoning methods.

Resolution procedure to decide satisfiability of a KB (simplest version; [Davis-Putnam, 1950s])

KB consists only of formulae that are clauses (ie \lor of variables or negated variables).

(With some work, can convert every KB to this form.)

Warmup: What can we conclude under foll. conditions?

KB has singleton clauses (A), (¬ A). HAS NO MODEL (UNSATISFIABLE)!

KB contains clause pairs of form (A \lor B₁ \lor ... \lor B_n) and (¬ A \lor C₁ \lor ... \lor C_m)

Every model for KB must make $(B_1 \lor ... \lor B_n \lor C_1 \lor ... \lor C_m)$ TRUE

Resolution procedure to decide satisfiability of a KB

(simplest version; [Davis-Putnam, 1950s])

KB consists only of formulae that are clauses (ie \lor of variables or negated variables).

(With some work, can convert every KB to this form.)

While KB nonempty do

Claim (won't prove): Finishes in finite time for every KB and prints correct answer.

```
If KB contains clause pairs of form (A), (¬ A)

Print ("No Model.") and STOP. /*WHY?*/

If KB contains clause pairs of form (A \lor B<sub>1</sub> \lor ... \lor B<sub>n</sub>) and (¬ A \lor C<sub>1</sub> \lor ... \lor C<sub>m</sub>)

Add (B<sub>1</sub> \lor ... \lor B<sub>n</sub> \lor C<sub>1</sub> \lor ... \lor C<sub>m</sub>) to KB. /*WHY?*/

else

Print ("Model exists") and STOP. /* WHY??*/

}
```

Good luck with midterm, And have a good fall break!