

COS 402 – Machine Learning and Artificial Intelligence Fall 2016

1

Lecture 11: Recommender Systems

Sanjeev Arora

Elad Hazan

(Borrows from slides of D. Jurafsky Stanford U.)

10/20/16

Admin

- Exercise 5 (written), next Tue, in class
- Midterm next Thu
- Survey results, analysis and follow-up

Recap

- Learning from examples
- Movie / philosophy of Al. Dr. Singer on Google ML.
 - Language
 - Probabilistic model of languageSemantics via word embedding

 - Today: recommender systems

- Knowledge representation
- Reinforcement learning

Recommender Systems

- Customer X
 - Buys Metallica CD
 - Buys Megadeth CD

Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendations

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller:

http://www.wired.com/wired/archive/12.10/tail.html

Sidenote: The Long Tail

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

• Top 10, Most Popular, Recent Uploads

• Tailored to individual users

• Amazon, Netflix, ...

Formal Model

- X = set of Customers
- *S* = set of **Items**
- Utility function $u: X \times S \rightarrow R$
 - **R** = set of ratings
 - **R** is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from known ones MAIN LEARNING PROBLEM
 - Mainly interested in high unknown ratings
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

• Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered
- Crowdsourcing: Pay people to label items

• Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

• Key problem: Utility matrix U is sparse

- Most people have not rated most items
- Cold start:
 - New items have no ratings
 - New users have no history

Three approaches to recommender systems:

- 1. Content-based
- 2. Collaborative
- Today! 3. Latent factor based

Content-based Recommender Systems

Content-based Recommendations

• Main idea: Recommend items to customer *x* similar to previous items rated highly by *x*

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, genre, director, actors, year...
 - Text: Set of "important" words in document
- How to pick important features?
 - **TF-IDF** (Term frequency * Inverse Doc Frequency)

User Profiles

- Want a vector with the same components/dimensions as items
 - Could be 1s representing user purchases
 - Or arbitrary numbers from a rating
- User profile is aggregate of items:
 - Average(weighted?)of rated item profiles

Prediction

- User and item vectors have the same components/dimensions, recommend the items whose vectors are most similar to the user vector!
- Given user profile **x** and item profile **i**,
- estimate $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{\mathbf{x} \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$

Pros

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- –: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering Harnessing quality judgments of other users

Collaborative Filtering

- Consider user **x**
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

MAIN: a methodological learningbased approach

A methodological learning-based approach

How many factors determine preference?

The low-rank assumption

"Preference is determined by k factors" usually k={5,...,10}

$$M_{ij} = v_i \cdot u_j = \sum_{t=1 \text{ to } k} v_i(t) u_j(t)$$

Where $v_i, u_j \in \mathbb{R}^k$

n

Example – rank 1 and its benefits

K=1

m

n

After observing (m+n) entries – can compute the entire matrix!

For every entry in the preference matrix $M_{ij} = v_i \cdot u_j$ Where $v_i, u_j \in R$ are scalars.

How many unknowns? How many observations are needed to complete the matrix?

(food for thought: relate to statistical learning theory – sample complexity?)

The matrix completion approach

Where $v_i, u_j \in \mathbb{R}^k$

Total of k(m+n) variables.

n

An algorithm for predicting recommendations

Input: observations of preferences M_{ij} for $\{(i_1, j_1), (i_2, j_2), \dots, (i_m, j_m)\}$ (m numbers in the range [0,1])

Output: A matrix $M \in R^{users \times movies}$ that has all predicted preferences

Assumption: there exist low dimensional vectors $\{v_i, u_j\}$ such that $M_{ij} = v_i \cdot u_j$

Algorithm: Gradient descent! Objective function:

$$f(\{u,v\}) = \sum_{i,j \text{ observed}} |M_{ij} - v_i \cdot u_j|^2$$

What do we do with the vectors?

Spelling out GD in this case

GD for matrix completion:

$$f(\{u,v\}) = \sum_{i,j \text{ observed}} |M_{ij} - v_i \cdot u_j|^2$$

- Initialize u_i, v_j randomly
- For iteration = 1,2,... do:
 - Update $v \leftarrow v \eta \frac{\partial}{\partial v} f(\{v_i, u_j\})$ for all vectors $\{v_i, u_j\}$ spelling it out, for each coordinate t of vector v_i , update:

$$\frac{\partial}{\partial v_a(t)} f = 2 \sum_j (M_{aj} - v_a \cdot u_j) \cdot u_j(t) \quad \text{Thus,}$$

$$\forall a, t: \quad v_a(t) \leftarrow v_a(t) - \eta \cdot 2 \sum_j (M_{aj} - v_a \cdot u_j) \cdot u_j(t)$$

- If needed, normalize each vector, $v \leftarrow \frac{v}{\max\{1, |v|\}}$
- End For
- Return final (or average of last few) vector solutions

Predicting meta-data from rec. data

Predicting meta-data from rec. data [Esther Rolf '15]

Implications to user privacy, security,...

Evaluation

users

Evaluation

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)

•
$$\sqrt{\sum_{xi} (r_{xi} - r_{xi}^*)^2}$$
 where r_{xi} is predicted, r_{xi}^* is the true rating of **x** on **i**

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Famous Historical Example:

The Netflix Prize

- Training data
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005

• Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: root mean squared error (RMSE)
- Netflix Cinematch RMSE: 0.9514

Competition

- 2700+ teams
- \$1 million prize for 10% improvement on Cinematch
- BellKor system won in 2009. Combined many factors
 - Overall deviations of users/movies
 - Regional effects
 - Local collaborative filtering patterns
 - Temporal biases

Summary: Recommendation Systems

- The Long Tail
- Content-based Systems
- Collaborative Filtering (touched)
- Latent Factors
- Food for thought: sample complexity?