
Machine Learning and Artificial Intelligence - COS 402

Written Homework Assignment 5

Due Date: two classes from the announcement in class, due in class

(a) Consulting other students from this course is allowed. In this case - clearly

state whom you consulted with for each problem separately.

(b) Searching the internet or literature for solutions is NOT allowed.

(c) Submit your homework in separate pages for the different questions, each

including your name and email address (this is to help the graders). Typing

solutions up is strongly advised.

1. [15] Consider the following MDP:
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There are five states: A, B, C, D and G. The reward at every state is −1, except at

G where the reward is 0. There are two actions, a and b, and the effect of each action

is deterministic as indicated in the figure. For instance, executing a in state B leads to

state A. Assume γ = 1 in this problem.

[Note: If you understand the algorithms, this problem can (and should) be solved

without a lot of tedious calculations, and without the use of a computer or even a cal-

culator. You do not need to show easy calculations in detail, but should nevertheless

justify your reasoning.]

(a) Show the sequence of utility estimates Ui that would result from executing value

iteration on this MDP. Also show the optimal policy that is computed using the

final utility estimate.
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(b) Show the sequence of policies πi and corresponding utility functions Uπi that

would result from executing policy iteration on this MDP. Assume that you start

with a policy that assigns action a to every state. The utility functions Uπi should

be computed exactly; note that these utilities may be infinite for some states.

Also, assume that all ties between the actions a and b in the policy improvement

step are always broken in favor of a.

(c) Generalizing this example, suppose we are given a graph with a distinguished

node (i.e., state) G, and k edges emanating from every node corresponding to k

(deterministic) actions. As in this example, all of the edges emanating from G

are self-loops, the node G is assigned reward 0, and all other nodes are assigned

reward −1. In terms of properties of the graph, what is the optimal utility func-

tion U∗, and what is the optimal policy π∗? If value iteration is applied to this

graph (viewed as an MDP), exactly how many iterations will be needed until the

algorithm converges? How about for policy iteration?

2. [10] Sometimes MDP’s are formulated with a reward function R(s, a) that depends

on the action taken (so that reward R(s, a) is received when action a is executed from

state s). For each of these formulations, show how to appropriately modify each of the

following:

• the Bellman equation:

v(s) = R(s) + γmax
a∈A

∑
s′

Pss′av(s′)

• the formula for converting the optimal utility v∗ into an optimal policy π∗

π∗(s) = arg max
a∈A

∑
s′

Pss′av∗(s′)

• the value iteration algorithm;

• the policy iteration algorithm.

3. [15] Let T (v) and ‖·‖∞ be as defined in class. The purpose of this exercise is to

complete the proof, whose sketch we have seen in class, that T is a contraction, i.e.,

that ‖T (v) − T (v′)‖∞ ≤ γ‖v − v′‖∞. As discussed in class, this is the key step in showing

that value iteration converges to the right answer.
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We will begin by proving some basic facts. Be sure to give genuine mathematical

proofs for each part of this problem. Also, your proofs should use elementary facts —

in other words, do not give proofs that rely on mathematical sledge-hammers like the

Cauchy-Schwartz inequality.

(a) Let u1, . . . , un and v1, . . . , vn be any sequences of real numbers. Prove that if

ui ≤ vi for all i then

max
i

ui ≤ max
i

vi.

(b) Let x1, . . . , xn and y1, . . . , yn be any sequences of real numbers. Prove that(
max

i
xi

)
−

(
max

i
yi

)
≤ max

i
(xi − yi),

and also that

max
i

(xi − yi) ≤ max
i
|xi − yi|.

(Hint: both of these inequalities can be proved using part (a) for an appropriate

choice of ui and vi.)

Finally, use these facts to prove that∣∣∣∣∣(max
i

xi

)
−

(
max

i
yi

)∣∣∣∣∣ ≤ max
i
|xi − yi|.

(c) Let x1, . . . , xn be any real numbers, and suppose that p1, . . . , pn are nonnegative

real numbers such that
∑

i pi = 1. Use the fact that |a + b| ≤ |a| + |b| for any real

numbers a and b to prove that∣∣∣∣∣∣∣∑i

pixi

∣∣∣∣∣∣∣ ≤ max
i
|xi|.

(d) Now let s be any state, and let (T (v))(s) denote the value of T (v) at state s. By

plugging in the definition of T , and using the properties proved above, prove that

|(T (v))(s) − (T (v′))(s)| ≤ γ‖v − v′‖∞.

Conclude that

‖T (v) − T (v′)‖∞ ≤ γ‖v − v′‖∞.
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4. [15] This exercise asks you to prove the policy improvement theorem which, as dis-

cussed in class, is the basis for proving that policy iteration is an effective method for

finding an optimal policy. (As a side note, and as mentioned in class as a bonus ques-

tion, the theorem can also be used to prove the existence of an optimal policy π∗, that is,

a policy that is optimal for all states simultaneously.)

Let π be any policy, and let π′ be the result of applying the policy improvement step

of policy iteration. That is, for all states s,

π′(s) = arg max
a

∑
s′

P(s′|s, a) vπ(s′),

where, as usual, the “arg max” returns any action a that realizes the maximum of the

value on the right.

We make the usual assumptions that the number of states and number of actions are

both finite, that γ < 1, etc.

Let us define the following functions vk(s) defined over states s. The first of these v0

is identical to vπ so that v0(s) = vπ(s) for all s. And for k ≥ 1, and for all s, we define

vk(s) = R(s) + γ
∑

s′
P(s′|s, π′(s)) vk−1(s′).

(a) Prove by induction on k that vk(s) ≥ vπ(s) for all states s and for all k ≥ 0.

(b) Prove that ‖vk − vπ
′

‖∞ → 0 as k → ∞.

(c) Combine parts (a) and (b) to prove that vπ
′

(s) ≥ vπ(s) for all states s. This shows

that policy iteration can only produce policies that are at least as good as the

preceding policy at every state.

(d) Prove that π is an optimal policy if and only if vπ
′

(s) = vπ(s) for all states s. This

implies that if π is not already optimal, then each policy improvement step will

lead to a new policy that is strictly better than the last one for at least one state.


