Machine Learning and Artificial Intelligence - COS 402

Written Homework Assignment 5
Due Date: two classes from the announcement in class, due in class

(a) Consulting other students from this course is allowed. In this case - clearly
state whom you consulted with for each problem separately.

(b) Searching the internet or literature for solutions is NOT allowed.

(¢) Submit your homework in separate pages for the different questions, each
including your name and email address (this is to help the graders). Typing

solutions up is strongly advised.

1. [15] Consider the following MDP:

There are five states: A, B, C, D and G. The reward at every state is —1, except at
G where the reward is 0. There are two actions, a and b, and the effect of each action
is deterministic as indicated in the figure. For instance, executing a in state B leads to
state A. Assume y = 1 in this problem.

[Note: If you understand the algorithms, this problem can (and should) be solved
without a lot of tedious calculations, and without the use of a computer or even a cal-
culator. You do not need to show easy calculations in detail, but should nevertheless

justify your reasoning.]

(a) Show the sequence of utility estimates U; that would result from executing value
iteration on this MDP. Also show the optimal policy that is computed using the

final utility estimate.



(b) Show the sequence of policies m; and corresponding utility functions U™ that
would result from executing policy iteration on this MDP. Assume that you start
with a policy that assigns action a to every state. The utility functions U™ should
be computed exactly; note that these utilities may be infinite for some states.
Also, assume that all ties between the actions a and b in the policy improvement
step are always broken in favor of a.

(c) Generalizing this example, suppose we are given a graph with a distinguished
node (i.e., state) G, and k edges emanating from every node corresponding to k
(deterministic) actions. As in this example, all of the edges emanating from G
are self-loops, the node G is assigned reward 0, and all other nodes are assigned
reward —1. In terms of properties of the graph, what is the optimal utility func-
tion U*, and what is the optimal policy 7*? If value iteration is applied to this
graph (viewed as an MDP), exactly how many iterations will be needed until the

algorithm converges? How about for policy iteration?

2. [10] Sometimes MDP’s are formulated with a reward function R(s,a) that depends
on the action taken (so that reward R(s, a) is received when action a is executed from
state s). For each of these formulations, show how to appropriately modify each of the

following:

o the Bellman equation:
V) = R+ ymax ) Pueav(s)
e the formula for converting the optimal utility v* into an optimal policy 7*
T (S) = arg I?SL‘XZ Pss’av (S)

e the value iteration algorithm;

e the policy iteration algorithm.
3.[15] Let T(v) and |-||» be as defined in class. The purpose of this exercise is to
complete the proof, whose sketch we have seen in class, that T is a contraction, i.e.,
that [|T(v) = T(V)|le < VIlv — V'|le. As discussed in class, this is the key step in showing

that value iteration converges to the right answer.
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We will begin by proving some basic facts. Be sure to give genuine mathematical
proofs for each part of this problem. Also, your proofs should use elementary facts —
in other words, do not give proofs that rely on mathematical sledge-hammers like the

Cauchy-Schwartz inequality.

(a) Let uy,...,u, and vy,...,v, be any sequences of real numbers. Prove that if

u; < v; for all i then
miax u; < mlax V;.
(b) Let xy,...,x, and yy,...,y, be any sequences of real numbers. Prove that
(mlax xi) - (mlax yi) < mlaX(xi = Yi)s
and also that
mlax(x,- - yi) < max lx; = yil-

(Hint: both of these inequalities can be proved using part (a) for an appropriate
choice of u; and v;.)

Finally, use these facts to prove that

'(max x,-) — (max y,-)‘ < max |x; — yi.
1 l l

(c) Let xy, ..., x, be any real numbers, and suppose that py, ..., p, are nonnegative
real numbers such that }}; p; = 1. Use the fact that |a + b| < |a| + |b| for any real

numbers a and b to prove that

Z DiXi

(d) Now let s be any state, and let (T(v))(s) denote the value of T(v) at state 5. By

< max |x;].
l

plugging in the definition of 7', and using the properties proved above, prove that

(T W)(s) = (TN <AV = Vo

Conclude that

IT(W) = T(Vlleo <AV =V ]loo
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4. [15] This exercise asks you to prove the policy improvement theorem which, as dis-
cussed in class, is the basis for proving that policy iteration is an effective method for
finding an optimal policy. (As a side note, and as mentioned in class as a bonus ques-
tion, the theorem can also be used to prove the existence of an optimal policy n*, that is,
a policy that is optimal for all states simultaneously.)

Let 7 be any policy, and let 7’ be the result of applying the policy improvement step

of policy iteration. That is, for all states s,
n’'(s) = arg max Z P(s’|s,a) V'(s"),

where, as usual, the “arg max” returns any action a that realizes the maximum of the
value on the right.

We make the usual assumptions that the number of states and number of actions are
both finite, that y < 1, etc.

Let us define the following functions v,(s) defined over states s. The first of these v

is identical to V" so that vo(s) = v"(s) for all 5. And for & > 1, and for all s, we define
vi(s) = R(s) +7 ) P(s'ls, 7 (5)) via (s).

(a) Prove by induction on k that vi(s) > v"(s) for all states s and for all k¥ > 0.

(b) Prove that ||[vy — V" |lc — 0 as k — oo.

(c) Combine parts (a) and (b) to prove that V™ (s) > v"(s) for all states s. This shows
that policy iteration can only produce policies that are at least as good as the
preceding policy at every state.

(d) Prove that r is an optimal policy if and only if V7 (s) = v"(s) for all states s. This
implies that if 7 is not already optimal, then each policy improvement step will

lead to a new policy that is strictly better than the last one for at least one state.



