
Movie Embeddings

Problem :. This homework is about “movie embeddings,”which are like word embeddings
but can be used to recommend movies to people who provide one movie, or a number of
movies that they like. Movie vectors will be created using a dataset of movie likes of a large
number of users. To define movie vectors we use an analog of the Distributional hypothesis for
word meaning: you can “understand”a movie by looking at people who liked this particular
movie, and asking what other movies they like.

We use a very simple embedding. Let Xi,j be the number of users that liked both movies
i and j. Then we train the vectors v1, v2, . . . , for all the movies using the following objective
function, where vi is the vector for movie i.

Cost =
n∑

i=1

n∑
j=1

γij(vi · vj −Xij)
2

Where γij = 1 if i and j are different, and = 0 if i = j. Also, vi · vj is vector inner product.
The input to this optimization are the Xij counts and it has to find the movie vector vi

for each movie i.

To optimize, we use gradient decent: for each variable yk in the optimization the update
at step t is

yk → yk − η · ∇t,k

Here ∇t,k denotes the partial derivative of the objective with respect to variable yk at
iteration t. The variables are coordinates of the movie vectors.

Part 1: implementation

The Xij counts will come from the MovieLens dataset in which 943 users rated 1682
movies. We have preprocessed the dataset to simplify the homework; download it from:

movieratings.csv:
http://www.cs.princeton.edu/courses/archive/fall16/cos402/ex/movieratings.csv.
movies.csv:
http://www.cs.princeton.edu/courses/archive/fall16/cos402/ex/movies.csv.

The file movieratings has 100,000 rows. The three entries in each row represent movie id,
user id and movie rating, respectively. A rating of 1 indicates the user likes the movie, while
a rating of 0 indicates the user does not like the movie. movies.csv has 1682 movies. It maps
each movie id to its title.

In this part, you should write a script named as MovieEmbeddings.py. It
should have the following functions:

• make cooccurence : This function creates the co-occurrence matrix. Each entry Xi,j

is the number of users who like both movie i and j. Because of the way the matrix is
created, it should be symmetric.

1



• train : This function trains the movie vectors on the MovieLens dataset using gradient
decent. You should first initialize the movie vectors using standard normal distribution.
In your code, set learning rate η to 0.00001; the dimension of a movie vector k to 300,
and run 200 iterations. K is the dimension of the movie vector, i.e. the matrix of the
movie vectors is n by k. There are 1682 movie vectors and each movie vector has 300
elements. (You can try other settings but these worked in our trials.) For debugging
purposes, Train should print the value of the cost function at the end of each iteration.

• gradient : This function does the main work for train. It is the inner loop of the
optimization which uses gradient descent.

• recommend1 : This function recommends top 20 movies to a user when given a movie
that the user likes. Basically, you need to calculate the cosine similarity score between
the given movie vector and all the other movie vectors, and then pick the top 20 movies
that have the highest cosine similarity scores.

• recommend2 : Similar to recommend1, this function gets a list of movies from the
user, not just a single movie and return top 20 recommendations. It first computes
the average of the vectors for these movies, say v, and recommend other movies based
upon cosine similarity with v.

Part 2: Training and Recommendations

• Train the movie vectors with the dataset provided. Set the learing rate η at 0.00001
and the size of each movie vector k at 300. Output the value of the cost function after
each iteration of gradient for the first 10 iterations.

• Output the top 20 recommended movies returned by recommend1 given the movie lion
king.

• Output the top 20 recommended movies returned by recommend2 given the three
movies: sleepless in seattle, Philadelphia Story, Sex, Lies, and Video-
tape

What and how to turn in:

• 1. Turn in hard copies in class on the due date.

A printout of all your python scripts, movie recommendations and value of the
objective function in each iteration of gradient for 10 iterations.

• 2. Upload your code and outputs to CS dropbox by the due date.

Using this DropBox link,

http://dropbox.cs.princeton.edu/COS402 F2016/Programming Assignment3,

Upload all your python scripts and the cooccurrence matrix file: cooccurrence.csv.gz.
You should only turn in uncompressed .py files. All code should be working and well

2



documented. If appropriate, a readme.txt file explaining briefly how your code is orga-
nized, what data structures you are using, or anything else that will help the graders
understand how your code works.

3


