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What	we	want	



Immutable Data


First	Idea:	Don’t	Use	Mutable	Data/Effects	
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Good:

•  no race conditions, 

•  no deadlock

•  interleavings don’t matter

•  deterministic

•  equivalent to sequential code



    it looks pretty to boot


Bad:

•  Can’t interact with the 

world.

•  The world changes.

•  Threads can’t talk back and 

forth.







Second	Op-on:		Locks	

let deposit (a:account) (amount:int) : unit =  
  with_lock a.lock (fun () -> 
    if a.bal + amount < max_balance then 
      a.bal <- a.bal + amount))	

let with_lock l f =  
  Mutex.lock l; 
  let res =  
    try f () with exn ->  
     (Mutex.unlock l;  
      raise exn)  
  in 
  Mutex.unlock l; 
  res 

Associate	a	lock	with	
each	mutable	object.	
	
Acquire	&	release	
surrounding	each	
access	
	
Reason	as	if	a	sequence	
of	instruc-ons	occurs	
sequen-ally.	



But	....	
Managing	mul-ple	mutable	objects	got	really	hard	because	you	can't	
easily	put	two	good	program	components	together	to	make	another	
good	program	component:	

let withdraw (a:account) = ... 
 
let deposit (a:account) = ... 
 
let transfer (a:account)(b:account)(amt:float) = 
      withdraw a amt;  
 
      deposit b amt 
 

other	threads	can	see	a	bad	balance	value		
in	between	withdrawal	and	deposit	

huge	problem:		programmers	s-ll	
have	to	think	about	all	possible	interleavings	



And	....	
Managing	mul-ple	mutable	objects	got	really	hard	because	programs	
that	use	locks	just	don't	compose	very	well:	

 
let pop_two (s1:‘a stack)  
            (s2:‘a stack) : (‘a * ‘a) option = 
  with_lock s1.lock (fun _ ->  
  with_lock s2.lock (fun _ -> 
  match no_lock_pop s1, no_lock_pop s2 with 
     | Some x, Some y -> Some (x,y) 
     | Some x, None -> no_lock_push s1 x ; None 
     | None, Some y -> no_lock_push s2 y ; None)) 

And	we	had	to	worry	about	forgeZng	to	acquire	locks	or		
crea-ng	deadlocks	...	



Second	Idea:		Use	Locks	or	MPI	

Hardware
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Locks


Locks/MPI �
(a) are hard to reason about

(c) have lots of error modes


“Building	complex	parallel	programs	is	like	building	a	sky	scraper	
out	of	bananas.”		--	Simon	Peyton	Jones	



The	Problem	

Locks	are	an	indirect	way	at	geZng	to	what	we	
really	want:	

	
	
	
	
	

How	might	we	design	a	language	primi-ve	that	
encapsulates	this	no-on?	

a; 
b; 
c; 
d;   

execute	these	
instruc-ons	in	
order	without		
interrup-on	by	
other	threads	



Third	Idea:		Atomic	Blocks	

Atomic blocks
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Atomic blocks are 
much easier to 
use, and do 
compose


Atomic blocks 
are pieces of 
code that you 
can count on to 
operate exactly 
like sequential 
programs


Tricky gaps, so a 
little harder than 
immutable data but 
you can do more 
stuff




Atomic	Blocks	Cut	Down	Nondeterminism		

ac-on	1:	 ac-on	2:	

read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 



read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 

ac-on	1:	 ac-on	2:	

with	transac-ons:	

or	
read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 

without	atomic	transac-ons:	
vastly	more	possible	interleavings	

read x 

write x 

read x 

write x 

read x 

write x 

read x 

write x 

Atomic	Blocks	Cut	Down	Nondeterminism		



STM	IN	HASKELL	



Concurrent	Threads	in	Haskell	

main = do  

          id <- fork action1 
  action2 
  ... 

 

fork :: IO a -> IO ThreadId 

ac-on	1	and	
ac-on	2	in	
parallel	



Atomic	Blocks	in	Haskell	

main = do 
 id <- fork (atomic action1) 
 atomic action2 
 ... 

Idea: add a function atomic that guarantees atomic 
execution of a suspended (effectful) computation


ac-on	1	and	
ac-on	2		
atomic	
and	parallel	



read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 

ac-on	1:	 ac-on	2:	

with	transac-ons:	

or	
read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 

read x 
write x 
read x 
write x 

main = do 
 id <- fork (atomic action1) 
 atomic action2 
 ... 

Atomic	Blocks	in	Haskell	



Recall	Monads	
Key	idea:	

–  Monadic	typing	constrains	the	use	of	effec5ul	opera6ons	

•  int	->	int:			
–  cannot	access	a	reference		
–  cannot	doo	IO	so	you	know	that	that	func-on	is	pure	

•  int	->	IO	int:	
–  returns	a	suspended	computa-on	that	does	access	references	
–  IO	int	computa-on	can	be	composed	with	other	computa-ons		

We	will	do	the	same	thing	to	implement	transac-ons.		New	kind	
of	reference	that	can	only	be	accessed	inside	an	atomic	block	



Atomic	Details	

Introduce	a	type	for	impera-ve	transac-on	variables	(TVar)	and	a	
new	Monad	(STM)	to	track	transac-ons.	
–  STM	a			==		a	computa-on	producing	a	value	with	type	a	that	does	

transac-onal	memory	book	keeping	on	the	side	
–  Haskell	type	system	ensures	TVars	can	only	be	modified	in	transac-ons	

with	type	STM	a	
•  just	like	Haskell	refs	can	only	be	used	inside	computa-ons	with	type	IO	a	

	

atomic    :: STM a -> IO a           
new       :: a -> STM (TVar a) 
read      :: TVar a -> STM a 
write     :: TVar a -> a -> STM () 

TVar a      ==    ‘a ref 

Haskell	 OCaml	



Atomic	Example	

-- inc adds 1 to the mutable reference r 

inc :: TVar Int -> STM () 

 
inc r = do  

           v <- read r 

           write r (v+1)  

 

main  = do  

           r <- atomic (new 0) 
 fork (atomic (inc r)) 
 atomic (inc r); 

            



Atomic	Example	

-- inc adds 1 to the mutable reference r 

inc :: TVar Int -> STM () 

 
inc r = do  

           v <- read r 

           write r (v+1)  

 

main  = do  

           r <- atomic (new 0) 
 fork (atomic (inc r)) 
 atomic (inc r); 

            

Haskell	is	lazy	so	these	
computa-ons	are	suspended	
and	executed	within	the	atomic	
block	



STM	in	Haskell	

The	STM	monad	includes	a	specific	set	of	opera-ons:	
•  Can’t	use	TVars	outside	atomic	block																				
•  Can’t	do	IO	inside	atomic	block:			

•  atomic	is	a	func-on,	not	a	syntac-c	construct	
–  called	atomically	in	the	actual	implementa-on	

•  ...and,	best	of	all...		

atomic    :: STM a -> IO a 
new       :: a -> STM (TVar a) 
read      :: TVar a -> STM a 
write     :: TVar a -> a -> STM() 

atomic (if x<y then launchMissiles) 



STM	Computa-ons	Compose	

The	type	guarantees	that	an	
STM	computa-on	is	always	
executed	atomically.			
–  Glue	many	STM	

computa-ons	together	
inside	a	“do”	block	

–  Then	wrap	with	atomic	to	
produce	an	IO	ac-on.	

inc :: TVar Int -> STM () 

inc r = do  

 v <- read r                 
 write r (v+1)  

 

inc :: TVar Int -> STM () 
inc2 r = do  

           inc r 

           inc r  

 

inc :: TVar Int -> STM () 
foo = atomic (inc2 r) 

Composi6on	is	THE	way	to	build	big	programs	that	work	



Excep-ons	

let with_lock l f =  
  Mutex.lock l; 
  let res =  
    try f ()  
    with exn ->  
     (Mutex.unlock l;  
      raise exn)  
  in 
  Mutex.unlock l; 
  res 

when	excep-ons	get	
thrown,	we	are	o#en	
in	the	midst	of	some	
complex	ac-on.	
	
here,	we	must	unlock	
the	lock	to	get	back	to	
the	ini-al	state	
	
more	generally,	we	
might	have	mutated	
many	pieces	of	state	
and	must	"undo"	our	
changes		



The	STM	monad	supports	excep-ons:	
	

		

In	the	call	(atomic	s),	if	s	throws	an	excep-on,	the	transac6on	is	
aborted	with	no	effect	and	the	excep-on	is	propagated	to	the	
enclosing	code.	
	
No	need	to	restore	invariants,	or	release	locks!	
	
(you	s-ll	need	to	deal	with	the	excep-on	...)	

throw :: Exception -> STM a 
catch :: STM a ->(Exception -> STM a)-> STM a 

Excep-ons	



Starva-on	

Worry:	Could	the	system	“thrash”	by	con-nually	colliding	and	re-
execu-ng?	
	
No:	A	transac-on	can	be	forced	to	re-execute	only	if	another	
succeeds	in	commiZng.		That	gives	a	strong	progress	guarantee.	
	
But:	A	par-cular	thread	could	starve:	
	

Thread 1

Thread 2

Thread 3




THREE	MORE	IDEAS:	
RETRY,	ORELSE,	ALWAYS	



Idea	1:	Composi-onal	Blocking	

•  retry	means	“abort	the	current	transac-on	and	re-execute	it	
from	the	beginning”.	

•  Implementa-on	avoids	early	retry	using	reads	in	the	
transac-on	log	(i.e.	acc)	to	wait	on	all	read	variables.	
–  ie:	retry	only	happens	when	one	of	the	variables	read	on	the	path	to	

the	retry	changes	

withdraw :: TVar Int -> Int -> STM () 
withdraw acc n = 

   do bal <- readTVar acc 
      if bal < n then retry 
      writeTVar acc (bal-n) 

retry :: STM () 



Composi-onal	Blocking	

•  Retrying	thread	is	woken	up	automa-cally	when	acc	is	
wriFen,	so	there	is	no	danger	of	forgoFen	no-fies.	

•  No	danger	of	forgeZng	to	test	condi-ons	again	when	woken	
up	because	the	transac-on	runs	from	the	beginning.			

•  Correct-by-construc6on	design!	

withdraw :: TVar Int -> Int -> STM () 
withdraw acc n = 

         do { bal <- readTVar acc; 
              if bal < n then retry; 
              writeTVar acc (bal-n) } 



What	makes	Retry	Composi-onal?	

retry	can	appear	anywhere	inside	an	atomic	block,	including	
nested	deep	within	a	call.		For	example,	
	

		
waits	for:		
•  a1	balance	>	3		
•  and	a2	balance	>	7	
•  without	any	change	to	withdraw	func6on.	
	

atomic (do { withdraw a1 3; 
             withdraw a2 7 }) 



Idea	2:	Choice	

Suppose	we	want	to	transfer	3	dollars	from	
either	account	a1	or	a2	into	account	b.	

orElse :: STM a -> STM a -> STM a 

atomic ( 

  do 
   (withdraw a1 3) `orElse` (withdraw a2 3) 

       deposit b 3  

) 

Try this
 ...and if it retries, try 
this


then afterward, do this




Choice	is	composable,	too!	

transfer :: 
 TVar Int ->  
 TVar Int ->  
 TVar Int ->                 
 STM () 

 
transfer a1 a2 b =  
  do 
    withdraw a1 3 `orElse` withdraw a2 3 
    deposit b 3  

atomic ( 
  transfer a1 a2 b 

 `orElse` transfer a3 a4 b 
) 

The	func-on	transfer	calls	orElse,	but	calls	to	transfer	
can	s-ll	be	composed	with	orElse.	



Composing	Transac-ons	

•  A	transac-on	is	a	value	of	type	STM	a.	
•  Transac-ons	are	first-class	values.	
•  Build	a	big	transac-on	by	composing	liFle	
transac-ons:	in	sequence,	using	orElse	and	
retry,	inside	procedures....	

•  Finally	seal	up	the	transac-on	with	
							atomic	::	STM	a	->	IO	a	



Equa-onal	Reasoning	

STM supports nice equations for reasoning:




a `orElse` (b `orElse` c) == (a `orElse` b) `orElse` s



retry `orElse` s == s



s `orElse` retry == s�



These equations make STM an instance of a structure 
known as a MonadPlus -- a Monad with some extra 
operations and properties.




Idea	3:	Invariants	

The	route	to	sanity	is	to	establish	invariants	that	are	
assumed	on	entry,	and	guaranteed	on	exit,	by	every	
atomic	block.	
–  much	like	in	a	module	with	representa6on	invariants	
–  this	gives	you	local	reasoning	about	your	code	

•  We	want	to	check	these	guarantees.	But	we	don’t	
want	to	test	every	invariant	a#er	every	atomic	
block.	

•  Hmm....	Only	test	when	something	read	by	the	
invariant	has	changed....	rather	like	retry.	



Invariants:	One	New	Primi-ve	

always :: STM Bool -> STM () 

newAccount :: STM (TVar Int) 

newAccount =                              
 do { r <- new 0;                             
      always (accountInv r); 
       return v } 

 
accountInv r = do { x <- read r;                       
         return (x >= 0)};  

An arbitrary boolean 
valued STM computation


Any transaction that modifies the account will check the 
invariant (no forgotten checks). If the check fails, the 
transaction restarts.  A persistent assert!!




What	always	does	

•  The	func-on	always	adds	a	new	invariant	to	a	global	pool	of	
invariants.	

•  Conceptually,	every	invariant	is	checked	as	every	transac-on	
commits.	

•  But	the	implementa-on	checks	only	invariants	that	read	
TVars	that	have	been	wriFen	by	the	transac-on	

•  ...and	garbage	collects	invariants	that	are	checking	dead	
Tvars.	

always :: STM Bool -> STM () 



What	does	it	all	mean?	
•  Everything	so	far	is	intui-ve	and	arm-wavey.	
•  But	what	happens	if	it’s	raining,	and	you	are	inside	an	orElse	

and	you	throw	an	excep-on	that	contains	a	value	that	
men-ons...?	

•  We	need	a	precise	specifica-on!	



No way to wait for complex conditions


One 
exists


See “Composable Memory Transactions” for details.


Take COS 510 to understand what it means!




HASKELL	IMPLEMENTATION	



Implementa-on	

A	naive	implementa-on	(c.f.	databases):	
– Every	load	and	store	instruc-on	logs	informa-on	
into	a	thread-local	log.	

– A	store	instruc-on	writes	the	log	only.	
– A	load	instruc-on	consults	the	log	first.	
– Validate	the	log	at	the	end	of	the	block.	

•  If	succeeds,	atomically	commit	to	shared	memory.	
•  If	fails,	restart	the	transac-on.	



State	of	the	Art	Circa	2003	
No
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Sequential 
baseline (1.00x)


Coarse-grained 
locking (1.13x)


Fine-grained 
locking (2.57x)


Traditional STM 
(5.69x)


Workload: operations on 
a red-black tree,         
1 thread, 6:1:1 

lookup:insert:delete mix 
with keys 0..65535


See “Optimizing Memory Transactions” for more information.




New	Implementa-on	Techniques	
Direct-update	STM	

–  Allows	transac-ons	to	make	updates	in	place	in	the	heap	
–  Avoids	reads	needing	to	search	the	log	to	see	earlier	writes	that	the	

transac-on	has	made	
–  Makes	successful	commit	opera-ons	faster	at	the	cost	of	extra	work	on	

conten-on	or	when	a	transac-on	aborts	

Compiler	integra-on	
–  Decompose	transac-onal	memory	opera-ons	into	primi-ves	
–  Expose	these	primi-ves	to	compiler	op-miza-on	(e.g.	to	hoist	

concurrency	control	opera-ons	out	of	a	loop)	

Run-me	system	integra-on		
–  Integrates	transac-ons	with	the	garbage	collector	to	scale	to	atomic	

blocks	containing	100M	memory	accesses	



Results:	Concurrency	Control	Overhead	
No
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Sequential 
baseline (1.00x)


Coarse-grained 
locking (1.13x)


Fine-grained 
locking (2.57x)


Direct-update 
STM (2.04x)


Direct-update STM + 
compiler integration 

(1.46x)


Traditional STM 
(5.69x)


Scalable to multicore


Workload: operations on 
a red-black tree,         
1 thread, 6:1:1 

lookup:insert:delete mix 
with keys 0..65535




Results:	Scalability	(for	some	benchmark;	your	experience	may	vary)	

#threads


Fine-grained locking


Direct-update STM + 
compiler integration


Traditional STM


Coarse-grained locking
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Performance,	Summary	
Naïve	STM	implementa-on	is	hopelessly	inefficient.	
	
There	is	a	lot	of	research	going	on	in	the	compiler	and	
architecture	communi-es	to	op-mize	STM.	

–  hardware-supported	STM	
	
	



STM	WRAPUP	



STM	in	Mainstream	Languages	

There	are	similar	proposals	for	adding	STM	to	Java	and	
other	mainstream	languages.	

class Account {  
  float balance;  
  void deposit(float amt) {  
    atomic { balance += amt; }  
  }  
  void withdraw(float amt) {  
    atomic {  
      if(balance < amt) throw new OutOfMoneyError();  
      balance -= amt;  } 
  } 
  void transfer(Acct other, float amt) {  
    atomic {  // Can compose withdraw and deposit. 
      other.withdraw(amt); 
      this.deposit(amt); } 
  } 
} 



Weak	vs	Strong	Atomicity	

•  Unlike	Haskell,	type	systems	in	mainstream	
languages	don’t	control	where	effects	occur.	

•  What	happens	if	code	outside	a	transac-on	
conflicts	with	code	inside	a	transac-on?	
– Weak	Atomicity:	Non-transac-onal	code	can	see	
inconsistent	memory	states.	Programmer	should	
avoid	such	situa-ons	by	placing	all	accesses	to	
shared	state	in	transac-on.	

– Strong	Atomicity:	Non-transac-onal	code	is	
guaranteed	to	see	a	consistent	view	of	shared	
state.		This	guarantee	may	cause	a	performance	
hit.	For more information: “Enforcing Isolation and Ordering in STM”




Even	in	Haskell:		Easier,	But	Not	Easy.	

The	essence	of	shared-memory	concurrency	is		
deciding	where	cri6cal	sec6ons	should	begin	and	end	

	
–  Too	small:	applica-on-specific	data	races	(Eg,	may	see	deposit	
but	not	withdraw	if	transfer	is	not	atomic).	

–  Too	large:	delay	progress	because	deny	other	threads	access	to	
needed	resources.	

	
In	Haskell,	we	can	compose	STM	subprograms	but	at	some	

point,	we	must	decide	to	wrap	an	STM	in	"atomic"	
	

Programs	can	s-ll	be	non-determinis-c	and	hard	to	debug	



S-ll	Not	Easy,	Example	

Consider	the	following	program:	

	
Successful	comple-on	requires	A3	to	run	a#er	A1	but	before	A2.			
	
	
So	dele-ng	a	cri-cal	sec-on	(by	uncommen-ng	A0)	changes	the	
behavior	of	the	program	(from	non-termina-ng	to	termina-ng).	

Thread 1  
// atomic {                      //A0 
     atomic { x = 1; }           //A1 
     atomic { if (y==0) abort; } //A2 
//}  

Thread 2  
atomic {      //A3 
  if (x==0) abort;  
  y = 1;  
} 

Initially, x = y = 0  



STM	Conclusions	

Atomic	blocks	(atomic,	retry,	orElse)	drama-cally	raise	the	level	of	
abstrac-on	for	concurrent	programming.	

–  Gives	programmer	back	some	control	over	when	and	where	they	have	to	
worry	about	interleavings	

It	is	like	using	a	high-level	language	instead	of	assembly	code.	Whole	
classes	of	low-level	errors	are	eliminated.	

–  Correct-by-construc-on	design	

Not	a	silver	bullet:		
–  you	can	s-ll	write	buggy	programs;		
–  concurrent	programs	are	s-ll	harder	than	sequen-al	ones	
–  aimed	only	at	shared	memory	concurrency,	not	message	passing	

	



WHAT'S	NEXT?	



In	this	course	
•  An	introduc-on	to	func-onal	programming	

–  immutable	data	
–  func-ons	as	data	
–  cool	abstrac-ons:	

•  futures,	lazy	computa-ons,	streams,	parallel	collec-ons,	atomic	
blocks,	con-nua-ons,	modules,	functors,	monads	

•  In	most	cases,	I	tried	to	explain	how	an	abstrac-on	helped	a	
programmer	reason	about	his	or	her	program	

•  Because,	in	the	end,	that	is	the	most	important	aspect	of	a	
good	programming	language:	it	makes	it	easier	to	reason	
about	your	programs	



COS	510	(Spring	2015)	

An	introduc-on	to	mechanical	reasoning	about	
programs	and	programming	languages.	

It's	a	grad	course	but	undergrads	are	encouraged	to	take	it!	
Colleen	(room	510)	will	fill	out	all	the	signatures	on	the	form	concerning	

undergraduates	taking	a	graduate	course!	



Programming	Language	Theory	
OCaml's	type	system	makes	predic-ons:	

e	:	int	->	int	

"expression	e,	if	it	terminates,	will	evaluate	to	a	func-on	value	fun	x	->	..."		

Can	we	prove	that	OCaml's	predic-ons	always	come	true?	
	

That's	actually	a	preFy	difficult	thing	to	show	in	general!	
There	are	infinitely	many	well-typed	programs!	
And	the	may	execute	for	arbitrary	many	steps!	



Also,	recall	the	midterm:	

let	rec	iterate	(f:int	list	->	int	list)	(x:int	list)	:	int	list	=	
		match	x	with		
				[]	->	[]	
		|	hd::tl	->	iterate	f	(f	tl)	
		
let	rec	iterate2	(x:int	list)	(f:int	list	->	int	list)	:	int	list	=	
		match	x	with	
				[]	->	[]	
		|	hd::tl	->	iterate2	(f	tl)	f	
		
Theorem:	
for	all	f:int	list	->	int	list.	
for	all	x:int	list.	
	iterate	f	x	==	iterate2	x	f		
	

case	x	=	hd::tl:	
			iterate	f	(hd::tl)																							 	(LHS)	
==	match	hd::tl	with	... 	 	(eval)	
==	iterate	f	(f	tl)																																 	(eval)	
==	iterate2	(f	tl)	f																														 	(by	IH)	
==	match	hd::tl	with	...	 	 	(rev.	eval)	
==	iterate2	(hd::tl)	f																								 	(rev.	eval)	
	

oops!	
Can	we	devise	a	

programming	language	
that	can	check	the	
correctness	of	our	

proofs?	



Yuppers!	

Coq:		A	theorem	proving	environment		



Yuppers!	



Yuppers!	



Yuppers!	



Yuppers!	



Yuppers!	



Yuppers!	



Yuppers!	



Summary	

If	you	enjoyed	326,	especially	the	theore-cal	parts,	
there	is	a	lot	more	fun	stuff	to	learn	in	510.	

Happy	Holidays!	


