
A	Bit	More	
Parallelism	

slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	
permission	granted	to	reuse	these	slides	for	non-commercial	educaDonal	purposes	

	

COS	326	
David	Walker	

Princeton	University	

Last	Time:	Parallel	CollecDons	
The	parallel	sequence	abstracDon	is	powerful:	
•  tabulate	
•  nth	
•  length	
•  map	
•  split	
•  treeview	
•  scan	

–  used	to	implement	prefix-sum	
–  clever	2-phase	implementaDon	
–  used	to	implement	filters	

•  sorDng	

PARALLEL	COLLECTIONS	IN	THE	
"REAL	WORLD"	

Big	Data	
If	Google	wants	to	index	all	the	web	pages	(or	images	or	gmails	
or	google	docs	or	...)	in	the	world,	they	have	a	lot	of	work	to	do	
•  Same	with	Facebook	for	all	the	facebook	pages/entries	
•  Same	with	TwiXer	
•  Same	with	Amazon	
•  Same	with	...	
	
Many	of	these	tasks	come	down	to	map,	filter,	fold,	reduce,	scan	

Google	Map-Reduce	

Google	MapReduce	(2004):	a	fault	tolerant,	
massively	parallel	funcDonal	programming	
paradigm	

–  based	on	our	friends	"map"	and	"reduce"	
–  Hadoop	is	the	open-source	variant	
–  Database	people	complain	that	they	
have	been	doing	it	for	a	while	

•  ...	but	it	was	hard	to	define		
Fun	stats	circa	2012:	

–  Big	clusters	are	~4000	nodes	
–  Facebook	had	100	PB	in	Hadoop	
–  TritonSort	(UCSD)	sorts	900GB/minute	
on	a	52-node,	800-disk	hadoop	cluster	

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

Abstract
MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.
Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.
Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds ofMapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.
As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.
The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.
Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis

To appear in OSDI 2004 1

Data	Model	&	OperaDons	
•  Map-reduce	operates	over	collecDons	of	key-value	pairs	

–  millions	of	files	(eg:	web	pages)	drawn	from	the	file	system	and	
parsed	in	parallel	by	many	machines	

•  The	map-reduce	engine	is	parameterized	by	3	funcDons,	
which	roughly	speaking	do	this:	

map : key1 * value1 -> (key2 * value2) list

combine : key2 * (value2 list) -> value2 option

reduce : key2 * (value2 list) -> key3 * (value3 list)

opDonal	–	ocen	used	to	compress	data	before	transfer	from	a	mapper	machine	
to	a	reducer	machine	

Architecture	

Distributed Implementation
In

pu
t D

at
a

O
ut

pu
t D

at
a

Map Shuffle/Sort Reduce

Local
Storage

Local
Storage

Local
Storage

Combine	

IteraDve	Jobs	are	Common	
Iterative Jobs are common…

In
pu

t D
at

a

O
ut

pu
t D

at
a

In
pu

t D
at

a

O
ut

pu
t D

at
a

W
or

ki
ng

 S
et

The	Control	Plane	
The control plane

Input
Data

Input
Data

Input
Data

Jobs,	Tasks	and	AXempts	
•  A	single	job	is	split	in	to	many	tasks	
•  Each	task	may	include	many	calls	to	map	and	reduce	
•  Workers	are	long-running	processes	that	are	assigned	many	

tasks	
•  MulDple	workers	may	a,empt	the	same	task	

–  each	invocaDon	of	the	same	task	is	called	an	aXempt	
–  the	first	worker	to	finish	"wins"	

•  Why	have	mulDple	machines	aXempt	the	same	task?	
–  machines	will	fail	

•  approximately	speaking:	5%	of	high-end	disks	fail/year		
•  if	you	have	1000	machines:		1	failure	per	week	
•  repeated	failures	become	the	common	case	

–  machines	can	parDally	fail	or	be	slow	for	some	reason	
•  reducers	can't	start	unDl	all	mappers	complete	

Flow	of	InformaDon	
The flow of information

Heartbeats

Job config.

Tasks to start OK

Completed

A	Modern	Socware	Stack	A modern software stack

Cluster
Node

Cluster
Node

Cluster
Node

Cluster
Node

Distributed Filesystem

Distributed Execution Engine

Key-value
store

High-level scripting language

Workload Manager

8

Sort-of	FuncDonal	Programming	in	Java	

Hadoop	interfaces:	

interface Reducer<K2,V2,K3,V3> {
 public void reduce (K2 key,

 Iterator<V2> values,
 OutputCollector<K3,V3> output)

 ...
}

interface Mapper<K1,V1,K2,V2> {
 public void map (K1 key,

 V1 value,
 OutputCollector<K2,V2> output)

 ...
}

Word	Count	in	Java	

class WordCountReduce {
 public void reduce(String key,
 Iterator<Integer> values,
 OutputCollector<String,Integer> output)
 {
 int count = 0;
 for (int v : values)
 count += 1;
 output.collect(key, count)
 }

class WordCountMap implements Map {
 public void map(DocID key
 List<String> values,
 OutputCollector<String,Integer> output)
 {
 for (String s : values)
 output.collect(s,1);
 }
}

PLEASE	RELAX		
AND	FOR	THE	SAKE	OF	HYGIENE,	

WIPE	THE	
JAVA	CODE	OFF	YOUR	BRAIN	

ASSIGNMENT	#7:	
IMPLEMENTING	AND	USING	
PARALLEL	COLLECTIONS	

US	Census	Queries	

End	goal:		develop	a	system	for	efficiently	compuDng	US	populaDon	queries	
by	geographic	region	

Hardware

Concurrency primitives

Library
 Library
 Library

Library

Library

Library

Applications

Libraries build
layered
concurrency
abstractions

Assignment	7	

unix	
processes	

futures	
message	
passing	

parallel	
sequences	

inverted	index	

geographic	
queries	

map-reduce	API	for	Assignment	7	
tabulate	(f:	int->’a)	(n:	int)	:	‘a	seq	 Create	seq	of	length	n,	element	i	holds	f(i)	 Parallel	
seq_of_array:	‘a	array	->	‘a	seq	 Create	a	sequence	from	an	array	 Constant	Dme	

array_of_seq:	‘a	seq	->	‘a	array	 Create	an	array	from	a	sequence	 Constant	Dme	

iter	(f:	‘a	->	unit):	‘a	seq	->	unit	 Applying		f	on	each	element	in	order.	Useful	for	debugging.	 SequenDal	
length:	‘a	seq	->	int	 Return	the	length	of	the	sequence	 Constant	Dme	

empty:	unit	->	‘a	seq	 Return	the	empty	sequence	 Constant	Dme	

cons:	‘a	->	‘a	seq	->	‘a	seq	 (nondestrucDvely)	cons	a	new	element	on	the	beginning	 SequenDal	
singleton:	‘a	->	‘a	seq	 Return	the	sequence	with	a	single	element	 Constant	Dme	

append:	‘a	seq	->	‘a	seq	->	‘a	seq	 (nondestrucDvely)	concatenate	two	sequences	 SequenDal	
nth:	‘a	seq	->	int	->	‘a	 Get	the	nth	value	in	the	sequence.	Indexing	is	zero-based.	 Constant	Dme	

map	(f:	‘a	->	‘b)	->	‘a	seq	->	‘a	seq	 Map	the	funcDon	f	over	a	sequence	 Parallel	
reduce	(f:	‘a	->	‘a	->	‘a)	(base:	‘a):	
						‘a	seq	->	‘a	

Fold	a	funcDon	f	over	the	sequence.		
f	must	be	associaDve,	and	base	must	be	the	unit	for	f.	 Parallel	

mapreduce:	(‘a->’b)->(‘b->’b->’b)->	
			‘b	->	‘a	seq	->	‘b	 Combine	the	map	and	reduce	funcDons.	 Parallel	

flaXen:	‘a	seq	seq	->	‘a	seq	 flaXen	[[a0;a1];	[a2;a3]]	=	[a0;a1;a2;a3]	 SequenDal	
repeat	(x:	‘a)	(n:	int)	:	‘a	seq	 repeat	x	4	=	[x;x;x;x]	 SequenDal	
zip:	(‘a	seq	*	‘b	seq)	->	(‘a	*	‘b)	seq	 zip	[a0;a1]	[b0;b1;b2]	=	[(a0,b0);(a1,b1)]	 SequenDal	
split:	‘a	seq	->	int	->	‘a	seq	*	‘a	seq	 split	[a0;a1;a2;a3]	1=	([a0],[a1;a2;a3])	 SequenDal	
scan:	(‘a->’a->’a)	->	‘a	->	
						‘a	seq	->	‘a	seq	

scan	f	b	[a0;a1;a2;…]	=		
						[f	b	a0;	f	(f	b	a0)	a1;	f	(f	(f	b	a0)	a1)	a2;	...]	 Parallel	

Processes	

separate	
address	spaces	
(no	shared	data)	

communicaDon	channel	(pipe)	

process	1	 process	2	

Need-to-know	Info	
•  Processes	are	managed	by	your	operaDng	system	
•  Share	Dme	execuDng	on	available	cores	
•  Processes	have	separate	address	spaces	so	communicaDon	

occurs	by:	
–  serializing	data	(converDng	complex	data	to	a	sequence	of	bits)	
–  wriDng	data	to	a	buffer	
–  reading	data	out	of	the	buffer	on	the	other	side	
–  deserializing	the	data	

•  Cost	is	relaDve	to	the	amount	of	data	transferred	
–  minimizing	data	transfers	is	an	important	performance	
consideraDon	

Unix	(Linux)				pipe(),	fork(),	exec()	
(Standard	Unix,		C-language	calling	sequences)	
int	pipe(int	fd[2]);	
			(now	can	read	from	file-descriptor	fd[0],	write	to	fd[1])	
	
int	fork(void)	
			(creates	a	new	OS	process;		
				in	child,	returns	0;	in	parent,	returns	process	id	of	child.)	
	
int	execve(char	*filename,	char	*argv[],	char	*envp[])	
			(overwrite	this	process	with	a	new	execuKon	of	filename(argv);	
				if	execve	returns	at	all,	then	it	must	have	failed)	

Typical	use	of	pipe,	fork,	exec	
What	you	write	at	the	shell	prompt	
cat	foo	|	grep	abc	
	
What	the	shell	does	(simplified)	
int	fd[2];		int	pid1,	pid2;	
pipe	(fd);	
pid1	=	fork();	
if	(pid1)	{	/*	in	the	parent	*/	
						close(fd[0]);	close(1);	dup2(fd[1],1);	close(fd[1]);	
						exec(“/bin/cat”,“foo”);	
}	else	{	/*	in	the	child	*/		
						close(fd[1]);	close(0);	dup2(fd[0],0);	close(fd[0]);	
						exec(“/bin/grep”,	“abc”)	
}	

One	learns	this	
in	COS	217	

fd	0	–	standard	in	
fd	1	–	standard	out	

Typical	use	of	pipe,	fork,	exec	
What	you	write	at	the	shell	prompt	
cat	foo	|	grep	abc	
	
What	the	shell	does	(simplified)	
int	fd[2];		int	pid1,	pid2;	
pipe	(fd);	
pid1	=	fork();	
if	(pid1)	{	/*	in	the	parent	*/	
						close(fd[0]);	close(1);		dup2(fd[1],1);	close(fd[1]);	
						exec(“/bin/cat”,“foo”);	
}	else	{	/*	in	the	child	*/		
						close(fd[1]);	close(0);	dup2(fd[0],0);	close(fd[0]);	
						exec(“/bin/grep”,	“abc”)	
}	

One	learns	this	
in	COS	217	

pipe	is	a	beauDful	funcDonal	
abstracDon,	isn't	it?	
	
It	hides	all	this	garbage	so	I	
don't	have	to	think	about	it!!	

Processes	in	OCaml	
create	a	child	process	using	fork	:	unit	->	int	

–  creates	two	processes;	idenDcal	except	for	the	return	value	of	fork()	

standard	use:	

match	fork	()	with	
|	0	->		...	child	process	code	...	
|	pid	->	...	parent	process	code	...		

let	x	=	fork	()	in	

parent	process	 child	process	

let	x	=	fork	()	in	

copies	of	data	
are	made	when	
either	parent	
or	child	writes	
to	the	data	

Interprocess	CommunicaDon	via	Pipes	
•  A	pipe	is	a	first-in,	first-out	queue	
•  Data	(a	sequence	of	bytes)	may	be	wriXen	on	one	end	of	the	

pipe	and	read	out	the	other	
–  writes	block	acer	the	underlying	buffer	is	filled	but	not	yet	read	
–  reads	block	unDl	data	appears	to	be	read	
–  bad	idea	to	read	and	write	the	same	pipe	in	the	same	process!	

	
•  CreaDng	a	pipe:	

–  pipe	:	unit	->	file_descr	*	file_descr	
	

pipe	

Futures	via	Processes	

f	x	 force	future	
pipe	

child	process	 parent	process	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	

future	f	x	runs	
f	x	in	a	child	process	

result	of	f	x	serialized	
and	sent	through	a	pipe	
back	to	the	parent	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	

type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

pipe	endpoint	read	by	parent	

process	id	of	the	child	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	 type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

	let	future	(f:	'a	->	'b)	(x:	'a)	:	'b	future	=	
				let	(fin,	fout)	=	pipe	()	in	
				match	fork	()	with	
				|	0	->	(
								close	fin;	
								let	oc	=	out_channel_of_descr	fout	in	
								Marshal.to_channel	oc	(f	x)	[Marshal.Closures];	
								Pervasives.exit	0)	
				|	cid	->	(
								close	fout;		
								{fd=fin;	pid=cid})	

create	pipe	to	
communicate	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	 type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

	let	future	(f:	'a	->	'b)	(x:	'a)	:	'b	future	=	
				let	(fin,	fout)	=	pipe	()	in	
				match	fork	()	with	
				|	0	->	(
								close	fin;	
								let	oc	=	out_channel_of_descr	fout	in	
								Marshal.to_channel	oc	(f	x)	[Marshal.Closures];	
								Pervasives.exit	0)	
				|	cid	->	(
								close	fout;		
								{fd=fin;	pid=cid})	

fork	child	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	 type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

	let	future	(f:	'a	->	'b)	(x:	'a)	:	'b	future	=	
				let	(fin,	fout)	=	pipe	()	in	
				match	fork	()	with	
				|	0	->	(
								close	fin;	
								let	oc	=	out_channel_of_descr	fout	in	
								Marshal.to_channel	oc	(f	x)	[Marshal.Closures];	
								Pervasives.exit	0)	
				|	cid	->	(
								close	fout;		
								{fd=fin;	pid=cid})	

child	uses	the	
output	(fout)	
and	closes	the	
input	(fin)	

parent	uses	the	
input	(fin)	and	

closes	the	output	
(fout)	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	 type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

	let	future	(f:	'a	->	'b)	(x:	'a)	:	'b	future	=	
				let	(fin,	fout)	=	pipe	()	in	
				match	fork	()	with	
				|	0	->	(
								close	fin;	
								let	oc	=	out_channel_of_descr	fout	in	
								Marshal.to_channel	oc	(f	x)	[Marshal.Closures];	
								Pervasives.exit	0)	
				|	cid	->	(
								close	fout;		
								{fd=fin;	pid=cid})	

parent	completes	
rouDne	

immediately;	
keeping	the	
future	data	

structure	around	
to	force	later	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	 type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

	let	future	(f:	'a	->	'b)	(x:	'a)	:	'b	future	=	
				let	(fin,	fout)	=	pipe	()	in	
				match	fork	()	with	
				|	0	->	(
								close	fin;	
								let	oc	=	out_channel_of_descr	fout	in	
								Marshal.to_channel	oc	(f	x)	[Marshal.Closures];	
								Pervasives.exit	0)	
				|	cid	->	(
								close	fout;		
								{fd=fin;	pid=cid})	

child	executes	
the	future	
funcDon	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	 type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

	let	future	(f:	'a	->	'b)	(x:	'a)	:	'b	future	=	
				let	(fin,	fout)	=	pipe	()	in	
				match	fork	()	with	
				|	0	->	(
								close	fin;	
								let	oc	=	out_channel_of_descr	fout	in	
								Marshal.to_channel	oc	(f	x)	[Marshal.Closures];	
								Pervasives.exit	0)	
				|	cid	->	(
								close	fout;		
								{fd=fin;	pid=cid})	

then	marshalls	
the	results,	
sending	them	
over	the	pipe	

...	and	then	
terminates,	its	
job	complete	

Marshalling	/	unmarshalling	
hXp://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html	

	
	 Module Marshal

module Marshal: sig .. end
	

Marshaling of data structures.

This module provides functions to encode arbitrary data structures as sequences of bytes, which
can then be written on a file or sent over a pipe or network connection. The bytes can then be
read back later, possibly in another process, and decoded back into a data structure. The format
for the byte sequences is compatible across all machines for a given version of OCaml.

Warning: marshaling is currently not type-safe. The type of marshaled data is not transmitted
along the value of the data, making it impossible to check that the data read back possesses the
type expected by the context. In particular, the result type of the Marshal.from_* functions is
given as 'a, but this is misleading: the returned OCaml value does not possess type 'a for all 'a; it
has one, unique type which cannot be determined at compile-type. The programmer should
explicitly give the expected type of the returned value, using the following syntax:

•  (Marshal.from_channel chan : type).

Anything can happen at run-time if the object in the file does not belong to the given type.	

In	Java	this	
is	called	
“serialize”	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	 type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

	let	force	(f:	'a	future)	:	'a	=	
				let	ic	=	in_channel_of_descr	f.fd	in		
				let	res	=	((Marshal.from_channel	ic)	:	'a)	in		
				close	f.fd;		
				match	waitpid	[]	f.pid	with	
				|	(_,WEXITED	0)	->	res	
				|	_	->	failwith	"process	failed	to	terminate	in	force"	

reads	the	data	
from	the	

future's	pipe		

closes	the	file	
descriptor	

Futures	via	Processes	

type	'a	future		
val	future	:	('a	->	'b)	->	'a	->	'b	future	
val	force	:	'a	future	->	'a	

future	interface	 type	'a	future	=	{	
		fd		:	file_descr;		
		pid:	int	
}		

	let	force	(f:	'a	future)	:	'a	=	
				let	ic	=	in_channel_of_descr	f.fd	in		
				let	res	=	((Marshal.from_channel	ic)	:	'a)	in		
				close	f.fd;		
				match	waitpid	[]	f.pid	with	
				|	(_,WEXITED	0)	->	res	
				|	_	->	failwith	"process	failed	to	terminate	in	force"	

wait	unDl	child	
terminates;	prevents	
"fork	bomb"	(other	

techniques	could	be	used	
here)	

Costs	of	“fork”	
•  Futures	enable	a	rather	simple	communicaDon	paXern:	

	
•  But	the	cost	of	starDng	up	a	process	and	communicaDng	data	

back	and	forth	is	high	
Unix	“fork”	system	call	copies	the	enDre	address	space	into	the	
child	process.		That	includes	all	the	closures	and	heap	data	
structures	in	your	enDre	program!	
•  OperaDng	system	does	it	lazily,	using	virtual-memory	paging.	
•  That	means	this	paXern:		if	(fork())	{parent…}	else	{exec();}	

does	not	pay	a	price,	does	no	copying	
But	the	paXern	on	the	previous	slides	has	no		“exec();”		call.	

parent	 worker	

Another	problem	with	“fork”	

Parent	process	and	child	process	must	share	memory!	
	
•  This	is	possible	on	two	different	cores	of	the	same	mulDcore	chip	
•  SomeDmes	possible	with	two	chips	on	the	same	circuit	board.	
•  Not	scalable	to	massive	parallelism	in	the	data	center!	

	

	

	let	future	(f:	'a	->	'b)	(x:	'a)	:	'b	future	=	
				let	(fin,	fout)	=	pipe	()	in	
				match	fork	()	with	
				|	0	->	(close	fin;	
																let	oc	=	out_channel_of_descr	fout	in	
																Marshal.to_channel	oc	(f	x)	[Marshal.Closures];	
																Pervasives.exit	0)	
				|	cid	->	(close	fout;	{fd=fin;	pid=cid})	

Message	Passing	
•  Futures	enable	a	rather	simple	communicaDon	paXern:	

	
But	the	cost	of	starDng	up	a	process	and	communicaDng	data	
back	and	forth	is	high	
•  Instead:	spawn	1	worker	and	have	it	do	many	tasks	

–  (the	implementaDon	of	futures	could	be	opDmized	to	reuse	1	
process	for	many	futures)	

parent	 worker	

parent	 worker	

Message	Passing	

•  Instead:	spawn	1	worker	and	have	it	do	many	tasks	
–  (the	implementaDon	of	futures	could	be	opDmized	to	reuse	1	
process	for	many	futures)	

parent	 worker	

Also:		when	creaDng	the	worker	(with	“fork”),	
don’t	send	data	at	the	same	Dme!		No	need	to	
share	memory;	the	“fork”	can	be	remote	on	
another	machine	(in	the	data	center).	

History:	Shared	Memory	vs.	Message-Passing	

In	1968	and	1973,	Dijkstra	
and	Hoare	described	the	
principles	of	shared-memory	
compuDng	with	semaphores	
(locks,	mutual	exclusion).	
	
	

Edsger	W.	Dijkstra	
1930	-	2001	

C.	Antony	R.	Hoare	
1934	-						

In	1978,	a	new	paradigm,	
“CommunicaDng	SequenDal	
Processes”,	was	introduced.			
CSP	uses	synchronous	channels	
with	no	shared	memory.		Nicer	
than	that	Dijkstra-Hoare	shared-
memory	stuff.	

based	on	
ideas	from	

CSP	was	invented	by	

CommunicaDng	SequenDal	Processes	(CSP)	

1978:	CSP	
Tony	Hoare	

The	CSP	paradigm	has	evolved	quite	a	bit	since	Tony	Hoare’s	
original	invenDon.	

1991:	Concurrent	ML	
John	Reppy	

1985:	Squeak	
Luca	Cardelli	and	Rob	Pike	

1994:	Newsqueak	
Rob	Pike	

2007: Go
Robert Griesemer, Rob Pike, and Ken Thompson	

2015 Go book by
Donovan and Kernighan	

Gratuitous	remarks	

Go	is	a	preXy	good	language:	
Safe	(like	ML,	Haskell,	Java,	Python;	unlike	C,	C++)	
Garbage-collected	(like	ML,	Haskell,	Java,	Python;	unlike	C,	C++)	
Enforces	abstracOons	(like	ML,	Haskell,	Java;	unlike	Python,	C,	C++)	
Good	concurrency	mechanisms	(beXer	than	ML,	Java,	Python,	C,	C++)	
Has	higher-order	funcOons	(like	ML,	Haskell,	sorta	Java;	unlike	C,	C++)	
Avoids	language	bloat	(like	ML,	Haskell,	C;		unlike	C++)	
Open	source	(like	ML,	Haskell,	C,	Python;	unlike	Java)	
	
	
	
But:	
No	polymorphism	(unlike	ML,	Haskell,	Java)	
Not	funcOonal	(too	many	features	
		that	depend	on	side	effects)	
Therefore:			Not	quite	Nirvana	
	
	

CSP	->			MPI		(1990s	–	now)	
MPI (Message Passing Interface)
is a language-independent communications protocol used to program parallel
computers. Both point-to-point and collective communication are supported.
MPI's goals are high performance, scalability, and portability. MPI remains the
dominant model used in high-performance computing today.

MPI has become a de facto standard for communication among processes that
model a parallel program running on a distributed memory system. Actual
distributed memory supercomputers such as computer clusters often run such
programs. MPI programs can also run on shared memory computers.

Most MPI implementations consist of a speciBic set of routines (i.e., an API)
directly callable from C, C++,Fortran and any language able to interface with such
libraries, including C#, Java or Python.

[Adapted from Wikipedia]

Back	to	CSP	

In	1978,	a	new	paradigm,	
“CommunicaDng	SequenDal	
Processes”,	was	introduced.			
CSP	uses	synchronous	channels	
with	no	shared	memory.		Nicer	
than	that	Dijkstra-Hoare	shared-
memory	stuff.	

CSP	was	invented	by	

Tony	Hoare	

PL	Theorists	love	"LiXle	Languages"	

CSP:	
•  just	process	creaDon,	

channel	creaDon,	data	send,	
data	receive	and	choice	

•  the	essence	of	concurrent	
programming	

The	lambda	calculus:	
•  just	variables,	funcDons,	

funcDon	applicaDon	
•  the	essence	of	funcDonal	

programming	

Programming	languages	are	complicated.	
There	is	great	benefit	to	studying	them	in	a	minimal	context.	

OperaDons	on	channels	in	CSP	

spawn f x create a new (non-shared-memory) thread
c←new() make a new channel
c!x send datum “x” on channel “c”
c?x receive datum “x” from channel “c”
select [c?x → f(x) | d?y → g(y) | e?z → h(z)]

 block until at least one channel is ready; then
 receive on a ready channel

SYNCHRONOUS channel:
 c!x blocks until some thread does a matching c?y
ASYNCHRONOUS (buffered) channel:
 c!x can proceed even if no channel is trying to read

Channels	are	both		
a	communicaOon	mechanism	and		
a	synchronizaOon	mechanism	

Typical	paXern	of	use	

(*	repeatedly	send	i	on	c	forever	*)	
let	rec	f	c	i	=		
				c	!	i;	f	c	i																	 	 	 		
	
(*	repeatedly	print	what	you	get	on	c	or	d	forever	*)	
let	rec	consume	c	d	=	
				select	[c?x	→	print	x	 	 		
																|	d?y	→	print	y];		
				consume	c	d 		

	 		
let	zeros	=	new()	in	
let	ones	=	new()	in		
spawn	(f	zeros)	0;	 	(*	send	0s	forever	*)	
spawn	(f	ones)	1;																	(*	send	1s	forever	*)	
consume	zeros	ones 	(*	print	0s	and	1s	as	you	receive	them	*)	

(*	sample	output	*)	
111010001000100110000000111111101010100111	

Assignment	7	channels	

No	need	for	“select”;	any	given	thread	is	
waiDng	on	just	one	channel.	
	
Channel	creaDon	is	combined	with	thread	
creaDon	in	a	simple	“design	paXern.”	

Assignment	7:	bidirecDonal	channels	

	type	('s,	'r)	channel	
	
	val	spawn		:	(('r,	's)	channel	->	'a	->	unit)	->	'a	->	('s,	'r)	channel	
	val	send					:	('s,	'r)	channel	->	's	->	unit	
	val	receive	:	('s,	'r)	channel	->	'r	
	
val	wait_die	:	('s,	'r)	channel	->	unit	

Message	Passing	API	

an	('s,	'r)	channel	for	ME	looks	like	this:	

me	 you	
's	

'r	

's	

'r	
YOU	ME	

What	can	you	tell	from	just	the	type	of	spawn?	

	type	('s,	'r)	channel	
	
	val	spawn		:	(('r,	's)	channel	->	'a	->	unit)	->	'a	->	('s,	'r)	channel	
	val	send					:	('s,	'r)	channel	->	's	->	unit	
	val	receive	:	('s,	'r)	channel	->	'r	
	
val	wait_die	:	('s,	'r)	channel	->	unit	

let		f	(c:	(int,bool)	channel)	(y:	string)	=	…	
	
in			spawn	f	x	

Summary	
•  A	few	disciplines	for	parallel	and	concurrent	programming:	

–  futures		
–  locks		
–  message-passing	
–  parallel	collecDons	

•  Higher-level	libraries	(futures,	collecDons)	that	hide	the	
synchronizaDon	primiDves	are	easier	to	use	and	more	reliable	
than	lower-level	synchronizaDon	primiDves	on	their	own	
(locks,	message	passing)	

•  On	the	other	hand,	higher-level	libraries	are	ocen	less	flexible	
–  data	represented	as	a	parDcular	collecDon	
–  computaDon	needs	to	fall	into	the	map-reduce	(or	series-
parallel	graph)	frameworks	

