
Parallelism	and	Concurrency	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educaGonal	purposes	
	

Parallelism	

2	

•  What	is	it?		

•  Today's	technology	trends.	

•  Then:	
–  Why	is	it	so	much	harder	to	program?	

•  (Is	it	actually	so	much	harder	to	program?)	
–  Some	preliminary	linguisGc	constructs	

•  thread	creaGon	
•  our	first	parallel	funcGonal	abstracGon:		futures		

PARALLELISM:			
WHAT	IS	IT?	

Parallelism	

4	

•  What	is	it?	
–  doing	many	things	at	the	same	Gme	instead	of	sequenGally	
(one-aSer-the-other).		

Flavors	of	Parallelism	

5	

Data	Parallelism	
–  same	computaGon	being	performed	on	a	collec%on	of	
independent	items	

–  e.g.,	adding	two	vectors	of	numbers	
Task	Parallelism	

–  different	computaGons/programs	running	at	the	same	Gme	
–  e.g.,	running	web	server	and	database	

Pipeline	Parallelism	
–  assembly	line:	

sequenGal	
f	

sequenGal	
g	

map	f	over	all	items	 map	g	over	all	items	

Parallelism	vs.	Concurrency	

6	

	
Parallelism:		performs	many	tasks	simultaneously	

•  purpose:		improves	throughput	
•  mechanism:			

–  many	independent	compuGng	devices	
–  decrease	run	Gme	of	program	by	uGlizing	mulGple	cores	or	computers	

•  eg:	running	your	web	crawler	on	a	cluster	versus	one	machine.	

Concurrency:	mediates	mulG-party	access	to	shared	resources	
•  purpose:	decrease	response	Gme	
•  mechanism:	

–  switch	between	different	threads	of	control	
–  work	on	one	thread	when	it	can	make	useful	progress;	when	it	can't,	
suspend	it	and	work	on	another	thread	

•  eg:		running	your	clock,	editor,	chat	at	the	same	Gme	on	a	single	CPU.	
–  OS	gives	each	of	these	programs	a	small	Gme-slice	(~10msec)	
–  oSen	slows	throughput	due	to	cost	of	switching	contexts	

•  eg:		don't	block	while	waiGng	for	I/O	device	to	respond,	but	let	another	thread	
do	useful	CPU	computaGon	

Parallelism	vs.	Concurrency	

7	

cpu	 cpu	 cpu	

job	

…	

Parallelism:	
perform	several	independent	
tasks	simultaneously	
	

resource	
(cpu,	disk,	server,		
data	structure)	

job	 …	Concurrency:	
mediate/mulGplex		
access	to		shared	
resource	
	

job	 job	

many	efficient	programs	use	some	parallelism	and	some	concurrency	

UNDERSTANDING	TECHNOLOGY	
TRENDS	

Moore's	Law	
•  Moore's	Law:		The	number	of	transistors	you	can	put	on	a	

computer	chip	doubles	(approximately)	every	couple	of	years.	

•  Consequence	for	most	of	the	history	of	compuGng:		All	
programs	double	in	speed	every	couple	of	years.	
–  Why?		Hardware	designers	are	wicked	smart.	
–  They	have	been	able	to	use	those	extra	transistors	to	(for	
example)	double	the	number	of	instrucGons	executed	per	Gme	
unit,	thereby	processing	speed	of	programs	

•  Consequence	for	applicaGon	writers:	
–  watch	TV	for	a	while	and	your	programs	op%mize	themselves!	
–  perhaps	more	importantly:		new	applicaGons	thought	
impossible	became	possible	because	of	increased	
computaGonal	power	

CPU	Clock	Speeds	from	1993-2005	

10	

CPU	Clock	Speeds	from	1993-2005	

11	

Next	year’s	machine	
is	twice	as	fast!	

CPU	Clock	Speeds	from	1993-2005	

12	

Oops!	

CPU	Power	1993-2005	

13	

CPU	Power	1993-2005	

14	

But	power	
consumpGon	is	only	
part	of	the	problem…
cooling	is	the	other!	

The	Heat	Problem	

15	

The	Problem	

16	

1993	
PenGum	
Heat	
Sink	

2005	
Cooler	

Cray-4:	1994	

17	

Up	to	64	processors	
Running	at	1	GHz	
8	Megabytes	of	RAM	
Cost:		roughly	$10M	
	
The	CRAY	2,3,	and	4	CPU	and	memory		
boards	were	immersed	in	a	bath	of		
electrically	inert	cooling	fluid.	
	

water	cooled!	

18	

Power	DissipaGon		

19	

20	

Darn!	
Intel	engineers	no		
longer	opGmize	my	
programs	while	
I	watch	TV!	

Power	to	chip	
peaking	

21	

But	look:	
Moore’s	Law	sGll	
holds,	so	far,	for		
transistors-per-chip.	

What	do	we	do	
with	all	those	transistors?	
	
1.  MulGcore!	

2.  System-on-chip	with	
specialized	coprocessors	
(such	as	GPU)	
	
Both	of	those	are	
PARALLELISM	

Parallelism	

22	

Why	is	it	parGcularly	important	(today)?	
–  Roughly	every	other	year,	a	chip	from	Intel	would:	

•  halve	the	feature	size	(size	of	transistors,	wires,	etc.)	
•  double	the	number	of	transistors	
•  double	the	clock	speed	
•  this	drove	the	economic	engine	of	the	IT	industry	(and	the	US!)	

–  No	longer	able	to	double	clock	or	cut	voltage:		a	processor	
won’t	get	any	faster!	
•  (so	why	should	you	buy	a	new	laptop,	desktop,	etc.?)	
•  power	and	heat	are	limitaGons	on	the	clock	
•  errors,	variability	(noise)	are	limitaGons	on	the	voltage	
•  but	we	can	sGll	pack	a	lot	of	transistors	on	a	chip…	(at	least	for	
another	10	to	15	years.)	

Core	
	
	

MulG-core	h/w	–	common	L2	

L2	cache	

Core	
	
	

Main	memory	

L1	cache	 L1	cache	

ALU	
ALU	

ALU	
ALU	

23	

Today…	(actually	9	years	ago!)	

24	

GPUs	

•  There's	nothing	like	video	
gaming	to	drive	progress	
in	computa%on!	

•  GPUs	can	have	hundreds	
or	even	thousands	of	
cores	

•  Three	of	the	5	most	
powerful	supercomputers	
in	the	world	take	
advantage	of	GPU	
acceleraGon.	

•  ScienGsts	use	GPUs	for	
simulaGon	and	modelling	
–  eg:	protein	folding	and	
fluid	dynamics		

GPUs	

•  There's	nothing	like	video	
gaming	to	drive	progress	
in	computa%on!	

•  GPUs	can	have	hundreds	
or	even	thousands	of	
cores	

•  Three	of	the	5	most	
powerful	supercomputers	
in	the	world	take	
advantage	of	GPU	
acceleraGon.	

•  ScienGsts	use	GPUs	for	
simulaGon	and	modelling	
–  eg:	protein	folding	and	
fluid	dynamics		

John	Danskin,	PhD	Princeton	1994,	
Vice	President	for	GPU	architecture,	Nvidia	
(what	he	does	with	his	spare	Gme	…	built	this	car	himself)	

So…	

27	

Instead	of	trying	to	make	your	CPU	go	faster,	Intel’s	just	going	to	
pack	more	CPUs	onto	a	chip.	

–  a	few	years	ago:	dual	core	(2	CPUs).	
–  a	liqle	more	recently:	4,	6,	8	cores.	
–  Intel	is	tesGng	48-core	chips	with	researchers	now.	
–  Within	10	years,	you’ll	have	~1024	Intel	CPUs	on	a	chip.	

	
In	fact,	that’s	already	happening	with	graphics	chips	(eg,	Nvidia).	

–  really	good	at	simple	data	parallelism	(many	deep	pipes)	
–  but	they	are	much	dumber	than	an	Intel	core.	
–  and	right	now,	chew	up	a	lot	of	power.	
–  watch	for	GPUs	to	get	“smarter”	and	more	power	efficient,	while	
CPUs	become	more	like	GPUs.	

STILL	MORE	PROCESSORS:			
THE	DATA	CENTER	

Data	Centers:		GeneraGon	Z	Super	Computers	

Data	Centers:		Lots	of	Connected	Computers!	

Data	Centers	
•  10s	or	100s	of	thousands	of	computers	
•  All	connected	together	
•  MoGvated	by	new	applicaGons	and	scalable	web	services:	

–  let's	catalogue	all	N	billion	webpages	in	the	world	
–  let's	all	allow	anyone	in	the	world	to	search	for	the	page	he	or	
she	needs	

–  let's	process	that	search	in	less	than	a	second	
•  It's	Amazing!	
•  It's	Magic!	

Data	Centers:		Lots	of	Connected	Computers	
Computer	containers	for	plug-and-play	parallelism:	

Sounds	Great!	

33	

•  So	my	old	programs	will	run	2x,	4x,	48x,	256x,	1024x	faster?	

Sounds	Great!	

34	

•  So	my	old	programs	will	run	2x,	4x,	48x,	256x,	1024x	faster?	
–  no	way!	

Sounds	Great!	

35	

•  So	my	old	programs	will	run	2x,	4x,	48x,	256x,	1024x	faster?	
–  no	way!	
–  to	upgrade	from	Intel	386	to	486,	the	app	writer	and	compiler	
writer	did	not	have	to	do	anything	(much)	
•  IA	486	interpreted	the	same	sequenGal	stream	of	instrucGons;	it	
just	did	it	faster	

•  this	is	why	we	could	watch	TV	while	Intel	engineers	opGmized	our	
programs	for	us	

–  to	upgrade	from	Intel	486	to	dual	core,	we	need	to	figure	out	
how	to	split	a	single	stream	of	instrucGons	in	to	two	streams	of	
instrucGons	that	collaborate	to	complete	the	same	task.	
•  without	work	&	thought,	our	programs	don't	get	any	faster	at	all	
•  it	takes	ingenuity	to	generate	efficient	parallel	algorithms	from	
sequen%al	ones	

What’s	the	answer?																		

In	Part:		FuncGonal	Programming!	

Dryad	

Pig	

Naiad	

PARALLEL	AND	CONCURRENT	
PROGRAMMING	

Core	
	
	

MulGcore	Hardware	&	Data	Centers	

L2	cache	

Core	
	
	

Main	memory	

L1	cache	 L1	cache	

ALU	
ALU	

ALU	
ALU	

39	

Speedup	

40	

•  Speedup:	the	raGo	of	sequenGal	program	execuGon	Gme	to	
parallel	execuGon	Gme.	

•  If	T(p)	is	the	Gme	it	takes	to	run	a	computaGon	on	p	processors	

•  A	parallel	program	has	perfect	speedup	(aka	linear	speedup)	if	

•  Bad	news:		Not	every	program	can	be	effec%vely	parallelized.	
–  in	fact,	very	few	programs	will	scale	with	perfect	speedups.	
–  we	certainly	can't	achieve	perfect	speedups	automaGcally	
–  limited	by	sequenGal	porGons,	data	transfer	costs,	...	

speedup(p)	=	T(1)/T(p)	

T(1)/T(p)	=	speedup	=	p	

Most	Troubling…	

41	

Most,	but	not	all,	parallel	and	concurrent	programming	models	
are	far	harder	to	work	with	than	sequenGal	ones:	

•  They	introduce	nondeterminism	
–  the	root	of	(almost	all)	evil	
–  program	parts	suddenly	have	many	different	outcomes	

•  they	have	different	outcomes	on	different	runs	
•  debugging	requires	considering	all	of	the	possible	outcomes	
•  horrible	heisenbugs	hard	to	track	down	

•  They	are	nonmodular	
–  module	A	implicitly	influences	the	outcomes	of	module	B	

•  They	introduce	new	classes	of	errors	
–  race	condiGons,	deadlocks	

•  They	introduce	new	performance/scalability	problems	
–  busy-waiGng,	sequenGalizaGon,	contenGon,	

Informal	Error	Rate	Chart	

regularity	
with	which	
you	shoot		
yourself	
in	the	foot	

Informal	Error	Rate	Chart	

regularity	
with	which	
you	shoot		
yourself	
in	the	foot	

null	pointers,	
paucity	of	types,	
inheritence	

manual	
memory	
management	

kitchen	
sink	+		
manual	
memory	

heaven	
on	earth	

unstructured	
parallel	
or	concurrent	
programming	

Solid	Parallel	Programming	Requires	

44	

1.	Good	sequenGal	programming	skills.	
–  all	the	things	we’ve	been	talking	about:	use	modules,	types,	...	

	
2.	Deep	knowledge	of	the	applicaGon.	
	
3.	Pick	a	correct-by-construc%on	parallel	programming	model	

–  whenever	possible,	a	parallel	model	with	semanGcs	that	coincides	
with	sequenGal	semanGcs	
•  whenever	possible,	reuse	well-tested	libraries	that	hide	parallelism	

–  whenever	possible,	a	model	that	cuts	down	non-determinism	
–  whenever	possible,	a	model	with	fewer	possible	concurrency	bugs	
–  if	bugs	can	arise,	know	and	use	safe	programming	paqerns	

	
4.	Careful	engineering	to	ensure	scaling.	

–  unfortunately,	there	is	someGmes	a	tradeoff:	
•  reduced	nondeterminism	can	lead	to	reduced	resource	uGlizaGon	

–  synchronizaGon,	communicaGon	costs	may	need	opGmizaGon	

OUR	FIRST	PARALLEL	
PROGRAMMING	MODEL:		THREADS	

Threads:	A	Warning	
•  Concurrent	Threads	with	Locks:		the	classic	shoot-yourself-in-

the-foot	concurrent	programming	model	
–  all	the	classic	error	modes	

•  Why	Threads?	
–  almost	all	programming	languages	will	have	a	threads	library	

•  OCaml	in	parGcular!	
–  you	need	to	know	where	the	piyalls	are	
–  the	assembly	language	of	concurrent	programming	paradigms	

•  we’ll	use	threads	to	build	several	higher-level	programming	
models	

Threads	

47	

•  Threads:		an	abstracGon	of	a	processor.	
–  programmer	(or	compiler)	decides	that	some	work	can	be	done	
in	parallel	with	some	other	work,	e.g.:	

–  we	fork	a	thread	to	run	the	computaGon	in	parallel,	e.g.:	

let _ = compute_big_thing() in
let y = compute_other_big_thing() in
...

let t = Thread.create compute_big_thing () in
let y = compute_other_big_thing () in
 ...

IntuiGon	in	Pictures	

48	

let t = Thread.create f () in
let y = g () in
 ...

Thread.create

execute g ()

...

processor	1	

(* doing nothing *)

execute f ()

...

processor	2	

Gme	1	
	
Gme	2	
	
Gme	3	

Of	Course…	

49	

Suppose	you	have	2	available	cores	and	you	fork	4	threads.		In	a	
typical	mulG-threaded	system,		
	

–  the	operaGng	system	provides	the	illusion	that	there	are	an	
infinite	number	of	processors.	
•  not	really:		each	thread	consumes	space,	so	if	you	fork	too	many	
threads	the	process	will	die.	

–  it	%me-mul%plexes	the	threads	across	the	available	processors.	
•  about	every	10	msec,	it	stops	the	current	thread	on	a	processor,	
and	switches	to	another	thread.	

•  so	a	thread	is	really	a	virtual	processor.	

OCaml,	Concurrency	and	Parallelism	
Unfortunately,	even	if	your	computer	has	2,	4,	6,	8	cores,	OCaml	
cannot	exploit	them.		It	mulGplexes	all	threads	over	a	single	core	

	
Hence,	OCaml	provides	concurrency,	but	not	parallelism.	Why?	
Because	OCaml	(like	Python)	has	no	parallel	“runGme	system”	or	
garbage	collector.		Other	funcGonal	languages	(Haskell,	F#,	...)	do.			
	
Fortunately,	when	thinking	about	program	correctness,	it	doesn’t	
maqer	that	OCaml	is	not	parallel	--	I	will	oSen	pretend	that	it	is.			
	
You	can	hide	I/O	latency,	do	mulGprocess	programming	or	distribute	
tasks	amongst	mulGple	computers	in	OCaml.	

core	

thread	 …	thread	 thread	

CoordinaGon	

51	

How	do	we	get	back	the	result	that	t	is	compuGng?	
	
	

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in
let y = g () in
 ...

First	Aqempt	

52	

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> ???

What’s	wrong	with	this?	

Second	Aqempt	

53	

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() =

 match !r with
 | Some v -> v

 | None -> wait()

in
let v = wait() in
 (* compute with v and y *)

Two	Problems	

54	

First,	we	are	busy-wai%ng.			
•  consuming	cpu	without	doing	something	useful.	
•  the	processor	could	be	either	running	a	useful	thread/program	or	power	

down.			

	
	

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() =

 match !r with
 | Some v -> v

 | None -> wait()

in
let v = wait() in
 (* compute with v and y *)

Two	Problems	

55	

Second,	an	operaGon	like	r	:=	Some	v	may	not	be	atomic.	
•  r	:=	Some	v		requires	us	to	copy	the	bytes	of	Some	v	into	the	ref	r	
•  we	might	see	part	of	the	bytes	(corresponding	to	Some)	before	we’ve	

wriqen	in	the	other	parts	(e.g.,	v).	
•  So	the	waiter	might	see	the	wrong	value.	
	
	
	

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() =

 match !r with
 | Some v -> v

 | None -> wait()

in
let v = wait() in
 (* compute with v and y *)

Atomicity	

56	

Consider	the	following:	
	

	
and	suppose	two	threads	are	incremenGng	the	same	ref	r:	
	
Thread	1 	 	Thread	2	
inc(r); inc(r);
!r !r

	
If	r	iniGally	holds	0,	then	what	will	Thread	1	see	when	it	reads	r?			

let inc(r:int ref) = r := (!r) + 1

Atomicity	

57	

The	problem	is	that	we	can’t	see	exactly	what	instrucGons	the	
compiler	might	produce	to	execute	the	code.	
	
It	might	look	like	this:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;
store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

	

Atomicity	

58	

But	a	clever	compiler	might	opGmize	this	to:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

	

Atomicity	

59	

Furthermore,	we	don’t	know	when	the	OS	might	interrupt	one	
thread	and	run	the	other.		
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;
store EAX into r store EAX into r

EAX := load(r) EAX := load(r)
	
(The	situaGon	is	similar,	but	not	quite	the	same	on	mulG-
processor	systems.)	

The	Happens	Before	RelaGon	
We	don’t	know	exactly	when	each	instrucGon	will	execute,	but	
there	are	some	constraints:		the	Happens	Before	relaGon	
	
Rule	1:		Given	two	expressions	(or	instrucGons)	in	sequence,	e1;	
e2	we	know	that	e1	happens	before	e2.	
	
Rule	2:		Given	a	program:	
let	t	=	Thread.create	f	x	in	
....	
Thread.join	t;	
e	
	
we	know	that	(f	x)	happens	before	e.	

Atomicity	

61	

One	possible	interleaving	of	the	instrucGons:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

What	answer	do	we	get?	

Atomicity	

62	

Another	possible	interleaving:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

What	answer	do	we	get	this	Gme?	

Atomicity	

63	

Another	possible	interleaving:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;
store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

What	answer	do	we	get	this	Gme?	
	
Moral:		The	system	is	responsible	for	scheduling	execuGon	of	
instrucGons.	
	
Moral:		This	can	lead	to	an	enormous	degree	of	nondeterminism.	

Atomicity	

64	

In	fact,	today’s	mulGcore	processors	don’t	treat	memory	in	a	
sequen%ally	consistent	fashion.	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;
store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

That	means	that	we	can’t	even	assume	that	what	we	will	see	
corresponds	to	some	interleaving	of	the	threads’	instruc%ons!	
	
Beyond	the	scope	of	this	class!		But	the	take-away	is	this:	It’s	not	a	good	idea	
to	use	ordinary	loads/stores	to	synchronize	threads;	you	should	use	explicit	synchronizaGon	
primiGves	so	the	hardware	and	opGmizing	compiler	don’t	opGmize	them	away.	

Atomicity	

65	

In	fact,	today’s	mulGcore	processors	don’t	treat	memory	in	a	
sequen%ally	consistent	fashion.	That	means	that	we	can’t	even	
assume	that	what	we	will	see	corresponds	to	some	interleaving	
of	the	threads’	instruc%ons!	
	
	
	
	
	
	
	
Beyond	the	scope	of	this	class!		But	the	take-away	is	this:	It’s	not	a	good	idea	
to	use	ordinary	loads/stores	to	synchronize	threads;	you	should	use	explicit	synchronizaGon	
primiGves	so	the	hardware	and	opGmizing	compiler	don’t	opGmize	them	away.	

Core	1	
	
	

L2	cache	

Core	2	
	
	

L1	cache	 L1	cache	

ALU	 ALU	

Core	3	
	
	

Core	4	
	
	

L1	cache	 L1	cache	

ALU	 ALU	
When	Core1	stores	to	
“memory”,	it	lazily	

propagates	to	Core2’s	L1	
cache.		The	load	at	Core2	
might	not	see	it,	unless	
there	is	an	explicit	
synchronizaGon.	

Summary:	Interleaving	&	Race	CondiGons	

66	

Calculate	possible	outcomes	for	a	program	by	considering	all	of	the	possible	
interleavings	of	the	atomic	acGons	performed	by	each	thread.	

–  Subject	to	the	happens-before	relaGon.	
•  can’t	have	a	child	thread’s	acGons	happening	before	a	parent	forks	it.	
•  can’t	have	later	instrucGons	execute	earlier	in	the	same	thread.	

–  Here,	atomic	means	indivisible	acGons.	
•  For	example,	on	most	machines	reading	or	wriGng	a	32-bit	word	is	atomic.	
•  But,	wriGng	a	mulG-word	object	is	usually	not	atomic.	
•  Most	operaGons	like	“b	:=	b	-	w”	are	implemented	in	terms	of	a	series	of	
simpler	operaGons	such	as		
–  r1	=	read(b);	r2	=	read(w);	r3	=	r1	–	r2;	write(b,	r3)	

	
Reasoning	about	all	interleavings	is	hard.	just	about	impossible	for	people	

–  Number	of	interleavings	grows	exponenGally	with	number	of	statements.	
–  It’s	hard	for	us	to	tell	what	is	and	isn’t	atomic	in	a	high-level	language.	
–  YOU	ARE	DOOMED	TO	FAIL	IF	YOU	HAVE	TO	WORRY	ABOUT	THIS	STUFF!	

Summary:	Interleaving	&	Race	CondiGons	

67	

Calculate	possible	outcomes	for	a	program	by	considering	all	of	the	possible	
interleavings	of	the	atomic	acGons	performed	by	each	thread.	

–  Subject	to	the	happens-before	relaGon.	
•  can’t	have	a	child	thread’s	acGons	happening	before	a	parent	forks	it.	
•  can’t	have	later	instrucGons	execute	earlier	in	the	same	thread.	

–  Here,	atomic	means	indivisible	acGons.	
•  For	example,	on	most	machines	reading	or	wriGng	a	32-bit	word	is	atomic.	
•  But,	wriGng	a	mulG-word	object	is	usually	not	atomic.	
•  Most	operaGons	like	“b	:=	b	-	w”	are	implemented	in	terms	of	a	series	of	
simpler	operaGons	such	as		
–  r1	=	read(b);	r2	=	read(w);	r3	=	r1	–	r2;	write(b,	r3)	

	
Reasoning	about	all	interleavings	is	hard.	just	about	impossible	for	people	

–  Number	of	interleavings	grows	exponenGally	with	number	of	statements.	
–  It’s	hard	for	us	to	tell	what	is	and	isn’t	atomic	in	a	high-level	language.	
–  YOU	ARE	DOOMED	TO	FAIL	IF	YOU	HAVE	TO	WORRY	ABOUT	THIS	STUFF!	

WARNING	
If	you	see	people	talk	about	interleavings,	BEWARE!	

It	probably	means	they’re	assuming		
“sequenGal	consistency,”	

which	is	an	oversimplified,	naïve	model	of	what	the	
parallel	computer	really	does.	

It’s	actually	more	complicated	than	that.	

A	convenGonal	soluGon	for	shared-memory	parallelism	

	

Thread	1 	 	 	Thread	2	
lock(mutex); lock(mutex);

inc(r); inc(r);

!r !r
unlock(mutex); unlock(mutex);

	
Guarantees	mutual	exclusion	of	these	criGcal	secGons.	
This	soluGon	works	(even	for	real	machines	that	are	not	
sequenGally	consistent),			but…	
Complex	to	program,	subject	to	deadlock,	prone	to	bugs,										
not	fault-tolerant,	hard	to	reason	about.

let inc(r:int ref) = r := (!r) + 1

A	convenGonal	soluGon	for	shared-memory	parallelism	

	

Thread	1 	 	 	Thread	2	
lock(mutex); lock(mutex);

inc(r); inc(r);

!r !r
unlock(mutex); unlock(mutex);

	
Guarantees	mutual	exclusion	of	these	criGcal	secGons.	
This	soluGon	works	(even	for	real	machines	that	are	not	
sequenGally	consistent),			but…	
Complex	to	program,	subject	to	deadlock,	prone	to	bugs,										
not	fault-tolerant,	hard	to	reason	about.

let inc(r:int ref) = r := (!r) + 1

SynchronizaHo
n	

Another	approach	to	the	coordinaGon	Problem	

70	

How	do	we	get	back	the	result	that	t	is	compu%ng?	
	
	

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in
let y = g () in
 ...

One	SoluGon	(using	join)	

71	

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 Thread.join t ;

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

One	SoluGon	(using	join)	

72	

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 Thread.join t ;

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

Thread.join t	causes	
the	current	thread	to	wait	

unGl	the	thread	t	
terminates.	

One	SoluGon	(using	join)	

73	

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 Thread.join t ;

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

 So	aSer	the	join,	we	know	
that	any	of	the	operaGons	

of	t	have	completed.	

SynchronizaHo
n	

In	Pictures	

74	

Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	know	that	for	each	
thread	the	previous	
instrucGons	must	happen	
before	the	later	instrucGons.	
	
So	for	instance,	inst1,1	must	
happen	before	inst1,2.	

In	Pictures	

75	

Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	also	know	that	the		
fork	must	happen	before	
the	first	instrucGon	of	the		
second	thread.	

In	Pictures	

76	

Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	also	know	that	the		
fork	must	happen	before	
the	first	instrucGon	of	the		
second	thread.	

And	thanks	to	the	join,		
we	know	that	all	of	the	
instrucGons	of	the	second	
thread	must	be	completed	
before	the	join	finishes.	

In	Pictures	

77	

Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

However,	in	general,	we	
do	not	know	whether	
inst1,i	executes	before	or		
aSer	inst2,j.	
	
In	general,	synchroniza%on	
instruc%ons	like	fork	and	
join	reduce	the	number	of	
possible	interleavings.	
	
Synchroniza%on	cuts	down		
nondeterminism.	
	
In	the	absence	of		
synchronizaGon	we	don’t	
know	anything…	

