
Call-by-name	
Call-by-value	

and	Lazy	Evalua1on	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educa1onal	purposes	
	

Last	Time	
OCaml	includes	lazy	computa1ons:	
•  computa1ons	that	are	executed	only	when	forced	
•  computed	only	once	--	their	results	are	memoized	
While	it	is	generally	a	bad	idea	to	use	laziness	in	combina1on	
with	effects	such	as	prin1ng,	prin1ng	helps	us	understand	when	
computa1ons	happen:	

let	x	=	lazy	(print_string	"hi")	in	
let	y	=	lazy	(print_string	"bi")	in	
Lazy.force	y;	
Lazy.force	x	

"bihi"	

let	x	=	lazy	(print_string	"hi")	in	
let	y	=	lazy	(print_string	"bi")	in	
Lazy.force	y;	
Lazy.force	y	

"bi"	

Call-by-value	Evalua1on	
Ignoring	lazy	expressions,	OCaml	is	call-by-value	(CBV)	
Also	called	strict	or	eager.	
	

						(fun	x	->	x	+	x)	(2+3)			
-->	(fun	x	->	x	+	x)	5	
-->	5	+	5		
-->	10	

Le;-to-right	CBV	evalua1on	of	a	func1on	applica1on	e1	e2:	
1)	e1	is	evaluated	to	a	value	v1,	which	should	be	a	func1on	(fun	x	->	e)	
2)	e2	is	evaluated	to	a	value	v2	
3)	evalua1on	con1nues	by	subs1tu1ng	v1	for	x	in	the	body	of	the	expression	e	

Note	that	OCaml	doesn't	specify	whether	it	is	le\-to-right	CBV	or	right-to-le\	CBV.	
Right-to-le;	CBV	evalua1on	of	a	func1on	applica1on:	
1)	e2	is	evaluated	to	a	value	v2	
2)	e1	is	evaluated	to	a	value	v1,	which	should	be	a	func1on	(fun	x	->	e)	
3)	evalua1on	con1nues	by	subs1tu1ng	v1	for	x	in	the	body	of	the	expression	e	

Call-by-value	Evalua1on	
No1ce	that	the	following	expression	evaluates	the	same	way	
regardless	of	whether	we	use	le\-to-right	or	right-to-le\	CBV	
	
	
	
	
	
	

						(fun	x	->	x	+	x)	(2+3)			
-->	(fun	x	->	x	+	x)	5	
-->	5	+	5		
-->	10	

						(fun	x	->	x	+	x)	(2+3)			
-->	(fun	x	->	x	+	x)	5	
-->	5	+	5		
-->	10	

le\-to-right	CBV:	 right-to-le\	CBV:	

Call-by-value	Evalua1on	
The	following	expression	is	evaluated	in	a	slightly	different	order	
under	le\-to-right	or	right-to-le\	CBV:	
	
	
	
	
	
	
	
	
But	no1ce	that	they	compute	the	same	value	in	the	end.	
Le\-to-right	and	right-to-le\	CBV	evalua1on	in	pure	languages	
(with	effects)	always	gives	the	same	answer.	

						(fun	x	->	fun	y	->	x	+	y)	2)	(3+5)			
-->	(fun	y	->	2	+	y)	(3+5)	
-->	(fun	y	->	2	+	y)	8		
-->	2	+	8	
-->	10	

							(fun	x	->	fun	y	->	x	+	y)	2)	(3+5)	
-->		(fun	x	->	fun	y	->	x	+	y)	2)	8	
-->		(fun	y	->	2	+	y)	8	
-->	2	+	8	
-->	10	

le\-to-right	CBV:	 right-to-le\	CBV:	

Specifying	Evalua1on	Orders	
There	are	many	more	ways	that	one	might	evaluate	a	func1onal	
program!		(We	saw	one:		lazy	evalua1on)	
	
If	we	want	to	specify	how	a	language	evaluates	precisely,	we	can	
use	an	opera?onal	seman?cs.	
	
We	typically	specify	opera1onal	seman1cs	using	inference	rules.	
Recall:	
	
	
	
	
	
	

premiss1	 premiss2	 premissn	...	
conclusion	

"if	premiss1	and	premiss2	
...	and	premiss3	are	all	valid	
then	the	conclusion	is	valid"	

valid	means	"can	be	proven	by	
finitely	many	other	inference	rules"	

λ-calculus	
The	pure	λ-calculus	is	a	language	that	contains	nothing	but	
variables,	func1ons,	and	func1on	applica1on:	
	
	
	
	
The	only	lambda	calculus	values	are	func1ons	(λx.e).	
When	you	see	the	leder	v	in	what	follows,	assume	I	am	referring	
to	a	value.		When	you	see	the	leder	e,	assume	I	am	referring	to	a	
general	expression.	

x							 	--	just	a	variable	
λx.e
-- a function with parameter x and body e (i.e., fun x -> e)

e1 e2
-- one expression applied to another (function application)	

λ-calculus	opera1onal	seman1cs	
CBV	evalua1on	rules: 	 	 	 	Examples:	
	
	
	
	

(λ x . e) v ↦ e[v/x]

(β-reduction)

e1 e2 ↦ e1' e2

e1 ↦ e1'

e1 e2 ↦ e1 e2'

e2 ↦ e2'

						(λx.	x	x)	(λy.y)			
-->	(λy.y)	(λy.y)		

						((λx.	x	x)	(λy.y))		((λx.	x	x)	(λy.y))			
-->	((λy.y)	(λy.y))		((λx.	x	x)	(λy.y))		

						((λx.	x	x)	(λy.y))		((λx.	x	x)	(λy.y))			
-->	((λx.	x	x)	(λy.y))		((λy.y)	(λy.y))		

λ-calculus	opera1onal	seman1cs	
Le\-to-right	CBV	evalua1on	rules: 	 	Examples:	
	
	
	
	

(λ x . e) v ↦ e[v/x]

(β-reduction)

e1 e2 ↦ e1' e2

e1 ↦ e1'

v e2 ↦ v e2'

e2 ↦ e2'

						(λx.	x	x)	(λy.y)			
-->	(λy.y)	(λy.y)		

						((λx.	x	x)	(λy.y))		((λx.	x	x)	(λy.y))			
-->	((λy.y)	(λy.y))		((λx.	x	x)	(λy.y))		

						((λx.	x	x)	(λy.y))		((λx.	x	x)	(λy.y))			
-->	((λx.	x	x)	(λy.y))		((λy.y)	(λy.y))		

Doesn't	apply	because	green	is	not	a	value:	

λ-calculus	opera1onal	seman1cs	
Call-by-Name	(CBN)	evalua1on	rules: 	 	Examples:	
	
	
	
	

(λ x . e) e2 ↦ e[e2/x]

(β-reduction)

e1 e2 ↦ e1' e2

e1 ↦ e1'

e1 e2' ↦ e1 e2'

e2 ↦ e2'

						(λx.	x	x)	((λy.y)	(λy.y))		
-->	((λy.y)	(λy.y))	((λy.y)	(λy.y))		

						((λx.	x	x)	(λy.y))		((λx.	x	x)	(λy.y))			
-->	((λy.y)	(λy.y))		((λx.	x	x)	(λy.y))		

Don't	evaluate	expressions	un1l	you	have	to.	
Just	subs1tute	them	in	for	parameters	of	func1ons	

Pragma1c	CBN	Examples	

						(fun	x	->	fun	y	->	x	+	y	+	y)	2)	(3+5)			
-->	(fun	y	->	2	+	y	+	y)	(3+5)	
-->	2	+	(3+5)	+	(3+5)		
-->	2	+	8	+	(3+5)	
-->	10	+	(3+5)	
-->	10	+	8	
-->	18	

						(fun	x	->	x;	x)	(print_string	"hi")		 	 	Printed	So	Far	
-->	(print_string	"hi");	(print_string	"hi")	
-->	();	print_string	"hi" 	 	 				 	hi	
-->	print_string	"hi" 	 	 	 	hi	
-->	() 	 	 	 	 	 	hihi	

I	decided	to	evaluate	
operators	le\-to-right	

Non-termina1ng	Computa1ons	
Consider	the	following	computa1on:	
	
	
	
What	does	it	evaluate	to	using	le\-to-right	CBV	evalua1on?	
	
	
	
That	is	the	same	thing	(modulo	variable	renaming)!	
That	thing	is	not	a	value	...	we	can	keep	compu1ng	...	forever	
	
We	also	get	the	same	result	if	we	use	right-to-le\	CBV	or	CBN!	

(λx.	x	x)	(λy.y	y)			

(λy.	y	y)	(λy.y	y)			

Do	we	always	get	the	same	answer?	
Consider	the	following	computa1on:	
	
	
	
What	does	it	evaluate	to	using	CBV	evalua1on	in	1	step?	
	
	
	
What	does	it	evaluate	to	using	CBN	evalua1on	in	1	step?	
	
	
Some1mes	call-by-name	terminates	when	call-by-value	doesn't!	

(λx. λy.y)	(loop)	
	
where	loop	is	(λy.	y	y)	(λy.y	y)			

(λx. λy.y)	(loop)	
	
where	loop	is	(λy.	y	y)	(λy.y	y)				

λy.y				

Is	CBN	always	beder	than	CBV?	
Consider	the	following	computa1on:	
	
	
	
CBV	evaluates	"big"	once.	
CBN	evaluates	"big"	twice:	
	
	
	
Any	1me	a	parameter	is	used	more	than	once	in	a	func1on	body,	
CBN	is	going	to	repeat	evalua1on	of	the	argument.		Not	good!	

(λx.	x	x)	(big)	
	
where	big	is	(((λy.	y)	(λy.y))	(λy.	y))	(λy.y)		

(λx.	x	x)	(big)	
-->	(big)	(big)	

CBN	vs	CBV	vs	Lazy	
Some1mes	CBN	terminates	when	CBV	does	not	terminate	
Some1mes	CBN	avoids	compu1ng	an	argument	when	CBV	does.	
Some1mes	CBN	computes	something	2	(or	3	or	4	...)	1mes	when	
CBV	computes	it	once.	
	
Laziness:	
•  can	be	specified	using	evalua1on	rules,	but	it	requires	some	

extra	mechanisms,	so	I	won't	do	it	now	
•  always	terminates	when	CBN	terminates	
•  always	avoids	compu1ng	an	argument	when	CBN	does	
•  computes	an	argument	at	most	once	
Is	lazy	evalua1on	the	way	to	go?	
	

Laziness	

•  Crea1ng	a	lazy	computa1on	is	a	lot	like	crea1ng	a	closure	for	
a	func1on	with	type	unit	->	t	

•  So	it	takes	some	work,	and	it	requires	some	space	
–  these	constant	factors	can	make	a	difference	

•  But	a	bigger	difference	is	the	difficulty	reasoning	about	space:	

let	xs	=	[1;2;3;4;	...	big	list	...]	in	
	
let	n	=	lazy	(fold	(+)	0	xs)	in	
...	
n	forced	and	xs	is	not	used	

•  xs	takes	up	a	lot	of	space	
•  n	is	just	one	integer	
•  xs	can't	be	collected	because	n	used	

exam	ques1on:		
show	how	to	evaluate	
expression	e	step	by	step	
using	the	subs1tu1on	
model	with		
•  le\-to-right	CBV	
•  right-to-le\	CBV,	or	
•  CBN	order!	

Summary	
•  CBV	is	the	evalua1on	strategy	used	by	most	languages	

–  OCaml,	Java,	C,	...	
•  CBN	is	used	by	no	languages	

–  too	expensive	in	prac1ce	
•  repeated	execu1on	of	the	same	computa1on	

–  but	is	most	likely	to	terminate	and	you	can	write	programs	that	
are	asympto1cally	faster	than	CBV	

•  Lazy	is	used	by	Haskell	
–  also	language	extension	in	OCaml	
–  can	also	be	simulated	in	other	languages	using	func1ons	with	
type	unit	->	t	and	references	

