
Func%onal	Decomposi%on	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educa%onal	purposes	
	

Func%onal	Decomposi%on	
	
==	
	

Break	down	complex	problems	in	to	a	set	of	simple	func%ons;		
Recombine	(compose)	func%ons	to	form	solu%on	

Such	problems	can	oQen	be	solved	using	a	combinator	library.	
(a	set	of	func%ons	that	fit	together	nicely)			

	
The	list	library,	which	contains	map	and	fold,	is	a	combinator	library.	

PIPELINES	

Pipe	

let (|>) x f = f x ;;

Type?	

Pipe	

let (|>) x f = f x ;;

Type?	

(|>) : 'a -> ('a -> 'b) -> 'b

Pipe	

let (|>) x f = f x ;;

let twice f x =
 x |> f |> f;;

Pipe	

let (|>) x f = f x ;;

let twice f x =
 (x |> f) |> f;;

leQ	associa%ve:		x	|>	f1	|>	f2	|>	f3			==		((x	|>	f1)	|>	f2)	|>	f3	

Pipe	

let (|>) x f = f x ;;

let twice f x =
 x |> f |> f;;

let square x = x*x;;

let fourth x = twice square;;

Pipe	

let (|>) x f = f x ;;

let twice f x = x |> f |> f;;
let square x = x*x;;
let fourth x = twice square x;;

let compute x =
 x |> square
 |> fourth
 |> (*) 3
 |> print_int
 |> print_newline;;

PIPING	LIST	PROCESSORS	
(Combining	combinators	cleverly)	

Another	Problem	

type student = {first: string;
 last: string;
 assign: float list;
 final: float};;

let students : student list =
 [
 {first = "Sarah";
 last = "Jones";
 assign = [7.0;8.0;10.0;9.0];
 final = 8.5};

 {first = "Qian";
 last = "Xi";
 assign = [7.3;8.1;3.1;9.0];
 final = 6.5};
]
;;

Another	Problem	

•  Create	a	func%on	display	that	does	the	following:	
–  for	each	student,	print	the	following:	

•  last_name,	first_name:	score	
•  score	is	computed	by	averaging	the	assignments	with	the	final		

–  each	assignment	is	weighted	equally	
–  the	final	counts	for	twice	as	much	

•  one	student	printed	per	line	
•  students	printed	in	order	of	score	

type student = {first: string;
 last: string;
 assign: float list;
 final: float};;

(1968	novel)	

Do Professors

Dream
 of

Homework-
grade

Databases
?

Another	Problem	

Create	a	func%on	display	that	
–  takes	a	list	of	students	as	an	argument	
–  prints	the	following	for	each	student:		

•  last_name,	first_name:	score	
•  score	is	computed	by	averaging	the	assignments	with	the	final		

–  each	assignment	is	weighted	equally	
–  the	final	counts	for	twice	as	much	

•  one	student	printed	per	line	
•  students	printed	in	order	of	score	

let display (students : student list) : unit =
 students |> compute score
 |> sort by score
 |> convert to list of strings
 |> print each string

Another	Problem	

let display (students : student list) : unit =
 students |> List.map compute_score
 |> sort by score
 |> convert to list of strings
 |> print each string

let compute_score
 {first=f; last=l; assign=grades; final=exam} =

 let sum x (num,tot) = (num +. 1., tot +. x) in

 let score gs e = List.fold_right sum gs (2., 2. *. e) in

 let (number, total) = score grades exam in
 (f, l, total /. number)
;;

Another	Problem	

let display (students : student list) : unit =
 students |> List.map compute_score
 |> List.sort compare_score
 |> convert to list of strings
 |> print each string

let student_compare (_,_,score1) (_,_,score2) =
 if score1 < score2 then 1
 else if score1 > score2 then -1
 else 0
;;

Another	Problem	

let display (students : student list) : unit =
 students |> List.map compute_score
 |> List.sort compare_score
 |> List.map stringify
 |> print each string

let stringify (first, last, score) =
 last ^ ", " ^ first ^ ": " ^ string_of_float score;;

Another	Problem	

let display (students : student list) : unit =
 students |> List.map compute_score
 |> List.sort compare_score
 |> List.map stringify
 |> List.iter print_endline

let stringify (first, last, score) =
 last ^ ", " ^ first ^ ": " ^ string_of_float score;;

COMBINATORS	FOR	OTHER	TYPES:	
PAIRS	

Simple	Pair	Combinators	

let both f (x,y) = (f x, f y);;
let do_fst f (x,y) = (f x, y);;
let do_snd f (x,y) = (x, f y);;

pair	combinators	

Example:		Piping	Pairs	

let both f (x,y) = (f x, f y);;
let do_fst f (x,y) = (f x, y);;
let do_snd f (x,y) = (x, f y);;

let even x = (x/2)*2 == x;;

let process (p : float * float) =
 p |> both int_of_float (* convert to int *)
 |> do_fst ((/) 3) (* divide fst by 3 *)
 |> do_snd ((/) 2) (* divide snd by 2 *)
 |> both even (* test for even *)
 |> fun (x,y) -> x && y (* both even *)

pair	combinators	

Summary	
•  (|>)	passes	data	from	one	func%on	to	the	next	

–  compact,	elegant,	clear		

•  UNIX	pipes	(|)	compose	file	processors		
–  unix	scrip%ng	with	|	is	a	kind	of	func%onal	programming	
–  but	it	isn't	very	general	since	|	is	not	polymorphic	
–  you	have	to	serialize	and	unserialize	your	data	at	each	step	

•  there	can	be	uncaught	type	(ie:	file	format)	mismatches	between	
steps	

•  we	avoided	that	in	your	assignment,	which	is	precy	simple	…	

•  Higher-order	combinator	libraries	arranged	around	types:	
–  List	combinators	(map,	fold,	reduce,	iter,	…)	
–  Pair	combinators	(both,	do_fst,	do_snd,	…)	
–  Network	programming	combinators	(Frene%c:		frene%c-lang.org)	

